2021
Machine Learning in Citizen Science: Promises and Implications
FRANZEN, Martina, Laure KLOETZER, Marisa PONTI, Jakub TROJAN, Julián VICENS et. al.Základní údaje
Originální název
Machine Learning in Citizen Science: Promises and Implications
Název česky
Strojové učení v občanské vědě: přísliby a implikace
Autoři
FRANZEN, Martina, Laure KLOETZER, Marisa PONTI, Jakub TROJAN a Julián VICENS
Vydání
Cham, The Science of Citizen Science, od s. 183-198, 16 s. 2021
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Kapitola resp. kapitoly v odborné knize
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Organizační jednotka
Přírodovědecká fakulta
ISBN
978-3-030-58277-7
Klíčová slova anglicky
Algorithms; Artificial intelligence; Computer vision; Machine learning; Transparency; Sensor; Datafication
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 1. 2021 12:22, RNDr. Jakub Trojan, MSc, Ph.D.
Anotace
V originále
The chapter gives an account of both opportunities and challenges of human–machine collaboration in citizen science. In the age of big data, scientists are facing the overwhelming task of analysing massive amounts of data, and machine learning techniques are becoming a possible solution. Human and artificial intelligence can be recombined in citizen science in numerous ways. For example, citizen scientists can be involved in training machine learning algorithms in such a way that they perform certain tasks such as image recognition. To illustrate the possible applications in different areas, we discuss example projects of human–machine cooperation with regard to their underlying concepts of learning. The use of machine learning techniques creates lots of opportunities, such as reducing the time of classification and scaling expert decision-making to large data sets. However, algorithms often remain black boxes and data biases are not visible at first glance. Addressing the lack of transparency both in terms of machine action and in handling user-generated data, the chapter discusses how machine learning is actually compatible with the idea of active citizenship and what conditions need to be met in order to move forward – both in citizen science and beyond.