2021
Recent Advances in Machine-Learning Driven Intrusion Detection in Transportation: Survey
BANGUI, Hind a Barbora BÜHNOVÁZákladní údaje
Originální název
Recent Advances in Machine-Learning Driven Intrusion Detection in Transportation: Survey
Autoři
BANGUI, Hind (504 Maroko, domácí) a Barbora BÜHNOVÁ (203 Česká republika, domácí)
Vydání
Warsaw, Poland, The 11th International Symposium on Frontiers in Ambient and Mobile Systems, od s. 877-886, 10 s. 2021
Nakladatel
Elsevier Science
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Polsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/21:00121270
Organizační jednotka
Fakulta informatiky
ISSN
UT WoS
000672800000117
EID Scopus
2-s2.0-85106748750
Klíčová slova anglicky
Machine learning; VANET; UAV; Intrusion Detection Systems;Thrust; Security
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 23. 5. 2022 14:28, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Rapid developments in Intelligent Transportation Systems (ITSs) have emerged as a new research field for building sustainable smart cities. VANET (vehicular ad hoc network) is one of the emergent transportation technologies that has a great impact on ensuring mainly traffic management and road safety in urban areas by effciently using data sharing among vehicles. To further increase the security and safety of passengers and drivers, ITSs are continually striving to make the fusion of emergent network technologies to provide more reliable and effcient services. Relating VANET to UAV (unmanned aerial vehicle) is an example of this fusion, where UAVs act as an assistant to vehicles aiming to extend the network connectivity while effciently avoiding obstacles (e.g., Buildings) and providing high data delivery ratios. However, VANET and UAV are still critical security subjects that must be addressed. Advanced Machine Learning (e.g., Deep Learning) techniques have recently been used to protect VANET and UAV communications against various cyber attacks that deteriorate the integrity, confidentiality, and availability of vehicular data. Thus, in this paper, we focus on reviewing related work on machine learning techniques for intrusion detection systems in VANET- and UAV-aided networks. We also highlight the main open research challenges in literature and provide hints for improving security in ITSs.
Návaznosti
CZ.02.1.01/0.0/0.0/16_019/0000822, interní kód MU (Kód CEP: EF16_019/0000822) |
| ||
EF16_019/0000822, projekt VaV |
|