J 2020

Kurt Gödel’s Religious Worldview: An Immanent Personal Conception

DOKULIL, Miloš

Základní údaje

Originální název

Kurt Gödel’s Religious Worldview: An Immanent Personal Conception

Autoři

DOKULIL, Miloš (203 Česká republika, garant, domácí)

Vydání

Journal of Interdisciplinary Studies, 2020, 0890-0132

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

60301 Philosophy, History and Philosophy of science and technology

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/00216224:14330/20:00118531

Organizační jednotka

Fakulta informatiky

Klíčová slova anglicky

Kurt Gödel; immanent personal conception

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 5. 11. 2021 14:56, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

Kurt Gödel is well-known as a first-class logician-mathematician, but less well for his proof of God. Godel's Incompleteness Theorems proved that all formal axiomatic systems have inherent limitations. He created also “Gödel numbering,” a special code for writing mathematical formulae. His proof of God was presented logically on the basis of modal axioms. Gödel was sure of God’s personal influence and believed in eternal life of the human soul. He was more than only a “Baptized Lutheran” whose belief was “theistic.” Yet Gödel’s individual assurance of God’s “personal existence“ cannot be viably presented on an interpersonal basis being a “first-person“ type of knowledge and, thus, outside interpersonal conditions for an objective construction beyond a “verbal proof.“ There are categories of reality not easily translatable without a shift in their meaning or a simplifying reduction. The metaphor of an analogy between the brain and its mind as against a computer’s hard- and software does not adequately consider the polarity between the message and its meaning. Gödel’s God was not a modally conceived formal-logical abbreviation of something unattainable for the believer, but a personal Security which does not require any proof.