J 2021

Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream

STEINDL, Petr, H SNIJDERS, G WESTRA, E HISSINK, K IAKOVLEV et. al.

Základní údaje

Originální název

Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream

Autoři

STEINDL, Petr, H SNIJDERS, G WESTRA, E HISSINK, K IAKOVLEV, S POLLA, JA FREY, J NORMAN, AC GOSSARD, JE BOWERS, D BOUWMEESTER a W LOFFLER

Vydání

Physical Review Letters, COLLEGE PK, The American Physical Society, 2021, 0031-9007

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 9.185

UT WoS

000652827600003

Štítky

Změněno: 21. 7. 2021 14:17, Mgr. Petr Steindl

Anotace

V originále

Coherent optical states consist of a quantum superposition of different photon number (Fock) states, but because they do not form an orthogonal basis, no photon number states can be obtained from it by linear optics. Here we demonstrate the reverse, by manipulating a random continuous single-photon stream using quantum interference in an optical Sagnac loop, we create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states. We demonstrate this experimentally using a true single-photon stream produced by a semiconductor quantum dot in an optical microcavity, and show that we can obtain light with g((2)) (0) -> 1 in agreement with our theory, which can only be explained by quantum interference of at least 3 photons. The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons, making them a resource for multiphoton entanglement.