2021
Structure Inversion Asymmetry and Rashba Effect in Quantum Confined Topological Crystalline Insulator Heterostructures
RECHCIŃSKI, Rafał; Marta GALICKA; Mathias SIMMA; Valentine V. VOLOBUEV; Ondřej CAHA et. al.Základní údaje
Originální název
Structure Inversion Asymmetry and Rashba Effect in Quantum Confined Topological Crystalline Insulator Heterostructures
Autoři
RECHCIŃSKI, Rafał; Marta GALICKA; Mathias SIMMA; Valentine V. VOLOBUEV; Ondřej CAHA; Jaime SÁNCHEZ-BARRIGA; Partha S. MANDAL; Evangelos GOLIAS; Andrei VARYKHALOV; Oliver RADER; Günther BAUER; Perła KACMAN; Ryszard BUCZKO a Gunther SPRINGHOLZ
Vydání
Advanced Functional Materials, Wrinheim, Wiley-VCH Verlag, 2021, 1616-301X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10302 Condensed matter physics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 19.924
Kód RIV
RIV/00216224:14310/21:00122451
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000634542200001
EID Scopus
2-s2.0-85103413519
Klíčová slova anglicky
angle resolved photoemission spectroscopy; heterostructures; lead‐ tin chalcogenides; quantum wells; Rashba effect; structure inversion asymmetry; tight binding calculations; topological insulators
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 9. 2021 14:28, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
Structure inversion asymmetry is an inherent feature of quantum confined heterostructures with non-equivalent interfaces. It leads to a spin splitting of the electron states and strongly affects the electronic band structure. The effect is particularly large in topological insulators because the topological surface states are extremely sensitive to the interfaces. Here, the first experimental observation and theoretical explication of this effect are reported for topological crystalline insulator quantum wells made of Pb1-xSnxSe confined by Pb1-yEuySe barriers on one side and by vacuum on the other. This provides a well defined structure asymmetry controlled by the surface condition. The electronic structure is mapped out by angle-resolved photoemission spectroscopy and tight binding calculations, evidencing that the spin splitting decisively depends on hybridization and, thus, quantum well width. Most importantly, the topological boundary states are not only split in energy but also separated in space-unlike conventional Rashba bands that are splitted only in momentum. The splitting can be strongly enhanced to very large values by control of the surface termination due to the charge imbalance at the polar quantum well surface. The findings thus, open up a wide parameter space for tuning of such systems for device applications.