J 2021

Structure Inversion Asymmetry and Rashba Effect in Quantum Confined Topological Crystalline Insulator Heterostructures

RECHCIŃSKI, Rafał; Marta GALICKA; Mathias SIMMA; Valentine V. VOLOBUEV; Ondřej CAHA et. al.

Základní údaje

Originální název

Structure Inversion Asymmetry and Rashba Effect in Quantum Confined Topological Crystalline Insulator Heterostructures

Autoři

RECHCIŃSKI, Rafał; Marta GALICKA; Mathias SIMMA; Valentine V. VOLOBUEV; Ondřej CAHA; Jaime SÁNCHEZ-BARRIGA; Partha S. MANDAL; Evangelos GOLIAS; Andrei VARYKHALOV; Oliver RADER; Günther BAUER; Perła KACMAN; Ryszard BUCZKO a Gunther SPRINGHOLZ

Vydání

Advanced Functional Materials, Wrinheim, Wiley-VCH Verlag, 2021, 1616-301X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10302 Condensed matter physics

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 19.924

Kód RIV

RIV/00216224:14310/21:00122451

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000634542200001

EID Scopus

2-s2.0-85103413519

Klíčová slova anglicky

angle resolved photoemission spectroscopy; heterostructures; lead‐ tin chalcogenides; quantum wells; Rashba effect; structure inversion asymmetry; tight binding calculations; topological insulators

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 27. 9. 2021 14:28, Mgr. Marie Novosadová Šípková, DiS.

Anotace

V originále

Structure inversion asymmetry is an inherent feature of quantum confined heterostructures with non-equivalent interfaces. It leads to a spin splitting of the electron states and strongly affects the electronic band structure. The effect is particularly large in topological insulators because the topological surface states are extremely sensitive to the interfaces. Here, the first experimental observation and theoretical explication of this effect are reported for topological crystalline insulator quantum wells made of Pb1-xSnxSe confined by Pb1-yEuySe barriers on one side and by vacuum on the other. This provides a well defined structure asymmetry controlled by the surface condition. The electronic structure is mapped out by angle-resolved photoemission spectroscopy and tight binding calculations, evidencing that the spin splitting decisively depends on hybridization and, thus, quantum well width. Most importantly, the topological boundary states are not only split in energy but also separated in space-unlike conventional Rashba bands that are splitted only in momentum. The splitting can be strongly enhanced to very large values by control of the surface termination due to the charge imbalance at the polar quantum well surface. The findings thus, open up a wide parameter space for tuning of such systems for device applications.