2022
Identification of Laminar Composition in Cerebral Cortex Using Low-Resolution Magnetic Resonance Images and Trust Region Optimization Algorithm
JAMÁRIK, Jakub; Lubomír VOJTÍŠEK; Vendula CHUROVÁ; Tomáš KAŠPÁREK; Daniel SCHWARZ et. al.Základní údaje
Originální název
Identification of Laminar Composition in Cerebral Cortex Using Low-Resolution Magnetic Resonance Images and Trust Region Optimization Algorithm
Autoři
JAMÁRIK, Jakub (703 Slovensko, domácí); Lubomír VOJTÍŠEK (203 Česká republika, domácí); Vendula CHUROVÁ (203 Česká republika, domácí); Tomáš KAŠPÁREK (203 Česká republika, domácí) a Daniel SCHWARZ (203 Česká republika, garant, domácí)
Vydání
Diagnostics, Basel, MDPI, 2022, 2075-4418
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30103 Neurosciences
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.600
Kód RIV
RIV/00216224:14110/22:00125139
Organizační jednotka
Lékařská fakulta
UT WoS
000757263000001
EID Scopus
2-s2.0-85121692716
Klíčová slova anglicky
cortical layers; mathematical modeling; MR imaging; optimization algorithm; brain imaging
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 10. 2024 10:35, Ing. Jana Kuchtová
Anotace
V originále
Pathological changes in the cortical lamina can cause several mental disorders. Visualization of these changes in vivo would enhance their diagnostics. Recently a framework for visualizing cortical structures by magnetic resonance imaging (MRI) has emerged. This is based on mathematical modeling of multi-component T1 relaxation at the sub-voxel level. This work proposes a new approach for their estimation. The approach is validated using simulated data. Sixteen MRI experiments were carried out on healthy volunteers. A modified echo-planar imaging (EPI) sequence was used to acquire 105 individual volumes. Data simulating the images were created, serving as the ground truth. The model was fitted to the data using a modified Trust Region algorithm. In single voxel experiments, the estimation accuracy of the T1 relaxation times depended on the number of optimization starting points and the level of noise. A single starting point resulted in a mean percentage error (MPE) of 6.1%, while 100 starting points resulted in a perfect fit. The MPE was <5% for the signal-to-noise ratio (SNR) ≥ 38 dB. Concerning multiple voxel experiments, the MPE was <5% for all components. Estimation of T1 relaxation times can be achieved using the modified algorithm with MPE < 5%.
Návaznosti
NV17-33136A, projekt VaV |
| |
90129, velká výzkumná infrastruktura |
|