2021
Fast Bridgeless Pyramid Segmentation for Organized Point Clouds
MADARAS, Martin, Martin STUCHLIK a Matúš TALČÍKZákladní údaje
Originální název
Fast Bridgeless Pyramid Segmentation for Organized Point Clouds
Autoři
MADARAS, Martin, Martin STUCHLIK a Matúš TALČÍK (703 Slovensko, domácí)
Vydání
SETUBAL, VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 4: VISAPP, od s. 205-210, 6 s. 2021
Nakladatel
SCITEPRESS
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Portugalsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/21:00123673
Organizační jednotka
Fakulta informatiky
ISBN
978-989-758-488-6
UT WoS
000668577400019
Klíčová slova anglicky
Point Cloud; Segmentation; Parallel; Pyramid; GPU; CUDA
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 23. 5. 2022 15:09, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
An intelligent automatic robotic system needs to understand the world as fast as possible. A common way to capture the world is to use a depth camera. The depth camera produces an organized point cloud that later needs to be processed to understand the scene. Usually, segmentation is one of the first preprocessing steps for the data processing pipeline. Our proposed pyramid segmentation is a simple, fast and lightweight split-and-merge method designed for depth cameras. The algorithm consists of two steps, edge detection and a hierarchical method for bridgeless labeling of connected components. The pyramid segmentation generates the seeds hierarchically, in a top-down manner, from the largest regions to the smallest ones. The neighboring areas around the seeds are filled in a parallel manner, by rendering axis-aligned line primitives, which makes the performance of the method fast. The hierarchical approach of labeling enables to connect neighboring segments without unnecessary bridges in a parallel way that can be efficiently implemented using CUDA.