2021
Electrospun Biodegradable Nanofibers Coated Homogenously by Cu Magnetron Sputtering Exhibit Fast Ion Release. Computational and Experimental Study
MANAKHOV, Anton M.; Natalya A. SITNIKOVA; Alphiya R. TSYGANKOVA; Alexander Yu. ALEKSEEV; Lyubov S. ADAMENKO et. al.Základní údaje
Originální název
Electrospun Biodegradable Nanofibers Coated Homogenously by Cu Magnetron Sputtering Exhibit Fast Ion Release. Computational and Experimental Study
Autoři
MANAKHOV, Anton M. (garant); Natalya A. SITNIKOVA; Alphiya R. TSYGANKOVA; Alexander Yu. ALEKSEEV; Lyubov S. ADAMENKO; Elizaveta PERMYAKOVA; Victor S. BAIDYSHEV; Zakhar I. POPOV; Lucie BLAHOVÁ; Marek ELIÁŠ; Lenka ZAJÍČKOVÁ (203 Česká republika, domácí) a Anastasiya O. SOLOVIEVA
Vydání
Membranes, Basel, MDPI, 2021, 2077-0375
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
20506 Coating and films
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.562
Kód RIV
RIV/00216224:14310/21:00123872
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000735924500001
EID Scopus
2-s2.0-85121317279
Klíčová slova anglicky
PCL nanofibers; XPS; copper; antibacterial coating; ion release; cytotoxicity
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 15. 2. 2023 19:05, doc. Mgr. Lenka Zajíčková, Ph.D.
Anotace
V originále
Copper-coated nanofibrous materials are desirable for catalysis, electrochemistry, sensing, and biomedical use. The preparation of copper or copper-coated nanofibers can be pretty challenging, requiring many chemical steps that we eliminated in our robust approach, where for the first time, Cu was deposited by magnetron sputtering onto temperature-sensitive polymer nanofibers. For the first time, the large-scale modeling of PCL films irradiation by molecular dynamics simulation was performed and allowed to predict the ions penetration depth and tune the deposition conditions. The Cu-coated polycaprolactone (PCL) nanofibers were thoroughly characterized and tested as antibacterial agents for various Gram-positive and Gram-negative bacteria. Fast release of Cu2+ ions (concentration up to 3.4 mu g/mL) led to significant suppression of E. coli and S. aureus colonies but was insufficient against S. typhimurium and Ps. aeruginosa. The effect of Cu layer oxidation upon contact with liquid media was investigated by X-ray photoelectron spectroscopy revealing that, after two hours, 55% of Cu atoms are in form of CuO or Cu(OH)(2). The Cu-coated nanofibers will be great candidates for wound dressings thanks to an interesting synergistic effect: on the one hand, the rapid release of copper ions kills bacteria, while on the other hand, it stimulates the regeneration with the activation of immune cells. Indeed, copper ions are necessary for the bacteriostatic action of cells of the immune system. The reactive CO2/C2H4 plasma polymers deposited onto PCL-Cu nanofibers can be applied to grafting of viable proteins, peptides, or drugs, and it further explores the versatility of developed nanofibers for biomedical applications use.