J 2022

Student Assessment in Cybersecurity Training Automated by Pattern Mining and Clustering

ŠVÁBENSKÝ, Valdemar, Jan VYKOPAL, Pavel ČELEDA, Kristián TKÁČIK, Daniel POPOVIČ et. al.

Základní údaje

Originální název

Student Assessment in Cybersecurity Training Automated by Pattern Mining and Clustering

Autoři

ŠVÁBENSKÝ, Valdemar (703 Slovensko, garant, domácí), Jan VYKOPAL (203 Česká republika, domácí), Pavel ČELEDA (203 Česká republika, domácí), Kristián TKÁČIK (703 Slovensko, domácí) a Daniel POPOVIČ (703 Slovensko, domácí)

Vydání

Education and Information Technologies, Springer, 2022, 1360-2357

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 5.500

Kód RIV

RIV/00216224:14610/22:00125355

Organizační jednotka

Ústav výpočetní techniky

UT WoS

000775723900004

Klíčová slova anglicky

cybersecurity education; security training; data science; educational data mining; learning analytics

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 30. 3. 2023 10:31, Mgr. Alena Mokrá

Anotace

V originále

Hands-on cybersecurity training allows students and professionals to practice various tools and improve their technical skills. The training occurs in an interactive learning environment that enables completing sophisticated tasks in full-fledged operating systems, networks, and applications. During the training, the learning environment allows collecting data about trainees' interactions with the environment, such as their usage of command-line tools. These data contain patterns indicative of trainees' learning processes, and revealing them allows to assess the trainees and provide feedback to help them learn. However, automated analysis of these data is challenging. The training tasks feature complex problem-solving, and many different solution approaches are possible. Moreover, the trainees generate vast amounts of interaction data. This paper explores a dataset from 18 cybersecurity training sessions using data mining and machine learning techniques. We employed pattern mining and clustering to analyze 8834 commands collected from 113 trainees, revealing their typical behavior, mistakes, solution strategies, and difficult training stages. Pattern mining proved suitable in capturing timing information and tool usage frequency. Clustering underlined that many trainees often face the same issues, which can be addressed by targeted scaffolding. Our results show that data mining methods are suitable for analyzing cybersecurity training data. Educational researchers and practitioners can apply these methods in their contexts to assess trainees, support them, and improve the training design. Artifacts associated with this research are publicly available.

Návaznosti

EF16_019/0000822, projekt VaV
Název: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur

Přiložené soubory