J 2022

Controlling the Metamagnetic Phase Transition in FeRh/MnRh Superlattices and Thin-Film Fe50-xMnxRh50 Alloys

HORKÝ, Michal, Jon Ander ARREGI, Sheena K. K. PATEL, Michal STAŇO, Rajasekhar MEDAPALLI et. al.

Základní údaje

Originální název

Controlling the Metamagnetic Phase Transition in FeRh/MnRh Superlattices and Thin-Film Fe50-xMnxRh50 Alloys

Autoři

HORKÝ, Michal, Jon Ander ARREGI, Sheena K. K. PATEL, Michal STAŇO, Rajasekhar MEDAPALLI, Ondřej CAHA (203 Česká republika, garant, domácí), Libor VOJÁČEK, Michal HORÁK, Vojtěch UHLÍŘ a Eric E. FULLERTON

Vydání

ACS Applied Materials and Interfaces, American Chemical Society, 2022, 1944-8244

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10302 Condensed matter physics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 9.500

Kód RIV

RIV/00216224:14310/22:00125403

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000742725000001

Klíčová slova anglicky

metamagnetism; magnetic alloys and superlattices; FeRh; MnRh; epitaxy; strain engineering

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 17. 2. 2022 14:51, Mgr. Marie Šípková, DiS.

Anotace

V originále

Equiatomic and chemically ordered FeRh and MnRh compounds feature a first-order metamagnetic phase transition between antiferromagnetic and ferromagnetic order in the vicinity of room temperature, exhibiting interconnected structural, magnetic, and electronic order parameters. We show that these two alloys can be combined to form hybrid metamagnets in the form of sputter-deposited superlattices and alloys on single-crystalline MgO substrates. Despite being structurally different, the magnetic behavior of the alloys with substantial Mn content resembles that of the FeRh/MnRh superlattices in the ultrathin individual layer limit. For FeRh/MnRh superlattices, dissimilar lattice distortions of the constituent FeRh and MnRh layers at the antiferromagnetic-ferromagnetic transition cause double-step transitions during cooling, while the magnetization during the heating branch shows a smooth, continuous trend. For Fe(50-x)Mn(x)Rh(50 )alloy films, the substitution of Mn at the Fe sites introduces an effective tensile in-plane strain and magnetic frustration in the highly ordered epitaxial films, largely influencing the phase transition temperature T-M (by more than 150 K). In addition, Mn acts as a surfactant, enabling the growth of continuous thin films at higher temperatures. Thus, the introduction of hybrid FeRh-MnRh systems with adjustable parameters provides a pathway for the realization of tunable spintronic devices based on magnetic phase transitions.