GUO, Xinyi, Terezie MALÍK MANDÁKOVÁ, Karolína TRACHTOVÁ, B. OZUDOGRU, J.Q. LIU a Martin LYSÁK. Linked by Ancestral Bonds: Multiple Whole-Genome Duplications and Reticulate Evolution in a Brassicaceae Tribe. Molecular Biology and Evolution. OXFORD: OXFORD UNIV PRESS, 2021, roč. 38, č. 5, s. 1695-1714. ISSN 0737-4038. Dostupné z: https://dx.doi.org/10.1093/molbev/msaa327.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Linked by Ancestral Bonds: Multiple Whole-Genome Duplications and Reticulate Evolution in a Brassicaceae Tribe
Autoři GUO, Xinyi (156 Čína, domácí), Terezie MALÍK MANDÁKOVÁ (203 Česká republika, domácí), Karolína TRACHTOVÁ (203 Česká republika, domácí), B. OZUDOGRU, J.Q. LIU a Martin LYSÁK (203 Česká republika, garant, domácí).
Vydání Molecular Biology and Evolution, OXFORD, OXFORD UNIV PRESS, 2021, 0737-4038.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 10608 Biochemistry and molecular biology
Stát vydavatele Velká Británie a Severní Irsko
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 8.800
Kód RIV RIV/00216224:14740/21:00119671
Organizační jednotka Středoevropský technologický institut
Doi http://dx.doi.org/10.1093/molbev/msaa327
UT WoS 000654668800001
Klíčová slova anglicky hybridization; polyploidy; whole-genome duplication; reticulate evolution; diploidization; dysploidy; chromosome rearrangements; phylogenetics
Štítky CF PLANT, rivok
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Mgr. Pavla Foltynová, Ph.D., učo 106624. Změněno: 24. 2. 2022 16:11.
Anotace
Pervasive hybridization and whole-genome duplications (WGDs) influenced genome evolution in several eukaryotic lineages. Although frequent and recurrent hybridizations may result in reticulate phylogenies, the evolutionary events underlying these reticulations, including detailed structure of the ancestral diploid and polyploid genomes, were only rarely reconstructed. Here, we elucidate the complex genomic history of a monophyletic clade from the mustard family (Brassicaceae), showing contentious relationships to the early-diverging clades of this model plant family. Genome evolution in the crucifer tribe Biscutelleae (similar to 60 species, 5 genera) was dominated by pervasive hybridizations and subsequent genome duplications. Diversification of an ancestral diploid genome into several divergent but crossable genomes was followed by hybridizations between these genomes. Whereas a single genus (Megadenia) remained diploid, the four remaining genera originated by allopolyploidy (Biscutella, Lunaria, Ricotia) or autopolyploidy (Heldreichia). The contentious relationships among the Biscutelleae genera, and between the tribe and other early diverged crucifer lineages, are best explained by close genomic relatedness among the recurrently hybridizing ancestral genomes. By using complementary cytogenomics and phylogenomics approaches, we demonstrate that the origin of a monophyletic plant clade can be more complex than a parsimonious assumption of a single WGD spurring postpolyploid cladogenesis. Instead, recurrent hybridization among the same and/or closely related parental genomes may phylogenetically interlink diploid and polyploid genomes despite the incidence of multiple independent WGDs. Our results provide new insights into evolution of early-diverging Brassicaceae lineages and elucidate challenges in resolving the contentious relationships within and between land plant lineages with pervasive hybridization and WGDs.
Návaznosti
GJ20-03419Y, projekt VaVNázev: Post-polyploidní evoluce genomů v tribu Microlepidieae (Brassicaceae)
Investor: Grantová agentura ČR, Post-polyploid genome evolution in Microlepidieae species (Brassicaceae)
LM2018140, projekt VaVNázev: e-Infrastruktura CZ (Akronym: e-INFRA CZ)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, e-Infrastruktura CZ
LQ1601, projekt VaVNázev: CEITEC 2020 (Akronym: CEITEC2020)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, CEITEC 2020
VytisknoutZobrazeno: 6. 5. 2024 10:13