J 2022

Structural MRI-Based Schizophrenia Classification Using Autoencoders and 3D Convolutional Neural Networks in Combination with Various Pre-Processing Techniques

VYŠKOVSKÝ, Roman, Daniel SCHWARZ, Vendula CHUROVÁ a Tomáš KAŠPÁREK

Základní údaje

Originální název

Structural MRI-Based Schizophrenia Classification Using Autoencoders and 3D Convolutional Neural Networks in Combination with Various Pre-Processing Techniques

Autoři

VYŠKOVSKÝ, Roman (203 Česká republika, garant, domácí), Daniel SCHWARZ (203 Česká republika, domácí), Vendula CHUROVÁ (203 Česká republika, domácí) a Tomáš KAŠPÁREK (203 Česká republika, domácí)

Vydání

Brain Sciences, Basel, MDPI, 2022, 2076-3425

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30103 Neurosciences

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.300

Kód RIV

RIV/00216224:14110/22:00129674

Organizační jednotka

Lékařská fakulta

UT WoS

000803514900001

Klíčová slova anglicky

schizophrenia; classification; 3D CNN; autoencoders; voxel-based morphometry; deformation-based morphometry; deep learning

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 2. 8. 2022 07:56, Mgr. Tereza Miškechová

Anotace

V originále

Schizophrenia is a severe neuropsychiatric disease whose diagnosis, unfortunately, lacks an objective diagnostic tool supporting a thorough psychiatric examination of the patient. We took advantage of today's computational abilities, structural magnetic resonance imaging, and modern machine learning methods, such as stacked autoencoders (SAE) and 3D convolutional neural networks (3D CNN), to teach them to classify 52 patients with schizophrenia and 52 healthy controls. The main aim of this study was to explore whether complex feature extraction methods can help improve the accuracy of deep learning-based classifiers compared to minimally preprocessed data. Our experiments employed three commonly used preprocessing steps to extract three different feature types. They included voxel-based morphometry, deformation-based morphometry, and simple spatial normalization of brain tissue. In addition to classifier models, features and their combination, other model parameters such as network depth, number of neurons, number of convolutional filters, and input data size were also investigated. Autoencoders were trained on feature pools of 1000 and 5000 voxels selected by Mann-Whitney tests, and 3D CNNs were trained on whole images. The most successful model architecture (autoencoders) achieved the highest average accuracy of 69.62% (sensitivity 68.85%, specificity 70.38%). The results of all experiments were statistically compared (the Mann-Whitney test). In conclusion, SAE outperformed 3D CNN, while preprocessing using VBM helped SAE improve the results.

Návaznosti

NV17-33136A, projekt VaV
Název: Neurominer: odhalování skrytých vzorů v datech ze zobrazování mozku