1996
Multiple diffraction of particles by a system of point scatterers as an exactly soluble problem using the Ewald concept
LITZMAN, Otto; Petr MIKULÍK a Petr DUBZákladní údaje
Originální název
Multiple diffraction of particles by a system of point scatterers as an exactly soluble problem using the Ewald concept
Autoři
LITZMAN, Otto; Petr MIKULÍK a Petr DUB
Vydání
J.Phys: Conds Matter, 1996, 0953-8984
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10301 Atomic, molecular and chemical physics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/00216224:14310/96:00005863
Organizační jednotka
Přírodovědecká fakulta
Klíčová slova anglicky
dynamical theory of diffraction; diffraction; multiple scattering
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 12. 2. 2007 18:47, doc. RNDr. Petr Mikulík, Ph.D.
Anotace
V originále
Reflection of a de Broglie plane wave incident on a system if point scatterers (nuclei) forming an ideal semi-infinite crystal is studied using the T-matrix formalism of Ewald's dynamical theory of diffraction. Using from the beginning the two-dimensional translational symmetry of the crystal bordered by a surface, simple exact many-beam analytical formulae for the intensities of the reflected waves are deduced, whereby the Ewald sphere is replaced by "the gamma-diagrams" and the usual three-dimensional dispersion surface by two-dimensional "dispersion plot". The results obtained are valid for arbitrary angles of incidence (including the grazing incidence, Bragg angle near pi/2, near or far from the Bragg reflection position) and for any directions of the reflected waves (including both the coplanar and noncoplanar reflections). The transparent algebraic form of the final formulae allows us to discuss analytically the solutions of the dispersion relation and the intensities of the reflections in two- and many-beam approximations.
Návaznosti
| VS96102, projekt VaV |
|