2022
Human-Generated Web Data Disentanglement for Complex Event Processing
BLANCO SÁNCHEZ, José Miguel, Mouzhi GE a Tomáš PITNERZákladní údaje
Originální název
Human-Generated Web Data Disentanglement for Complex Event Processing
Autoři
BLANCO SÁNCHEZ, José Miguel (724 Španělsko, garant, domácí), Mouzhi GE a Tomáš PITNER (203 Česká republika, domácí)
Vydání
Verona, Italy, 26th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, KES 2022, od s. 1341-1349, 9 s. 2022
Nakladatel
Elsevier
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/22:00126674
Organizační jednotka
Fakulta informatiky
ISSN
Klíčová slova anglicky
Complex Event Processing; Semantic Web; Data Disentanglement; Web Data Preprocessing;
Změněno: 6. 4. 2023 07:36, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
In social media, human-generated web data from real-world events have become exponentially complex due to the chaotic and spontaneous features of natural language. This may create an information overload for the information consumers, and in turn not easily digest a large amount of information in a limited time. To tackle this issue, we propose to use Complex Event Processing (CEP) and semantic web reasoners to disentangle the human-generated data and present users with only relevant and important data. However, one of the key obstacles is that the human-generated data can have no structured meaning sometimes even for the speaker, hindering the output of the CEP. Therefore, in order to adapt to the CEP inputs, we present two different techniques that allow for the discrimination and digestion of value of human-generated data. The first one relies on the Variable Sharing Property that was developed for relevance logics, while the second one is based on semantic equivalence and natural language processing. The results can be given to CEP for further semantic reasoning and generate digested information for users.