GALMIZ, Oleksandr, David PAVLIŇÁK a Mirko ČERNÁK. Applications of surface dielectric barrier discharge generated from liquid electrode. In 9th Central European Symposium on Plasma Chemistry (CESPC-9) joint with COST Action CA19110 Plasma Applications for Smart and Sustainable Agriculture (PlAgri). ISBN 978-80-8147-115-5. 2022.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Applications of surface dielectric barrier discharge generated from liquid electrode
Autoři GALMIZ, Oleksandr, David PAVLIŇÁK a Mirko ČERNÁK.
Vydání 9th Central European Symposium on Plasma Chemistry (CESPC-9) joint with COST Action CA19110 Plasma Applications for Smart and Sustainable Agriculture (PlAgri), 2022.
Další údaje
Originální jazyk angličtina
Typ výsledku Konferenční abstrakt
Obor 10305 Fluids and plasma physics
Stát vydavatele Slovensko
Utajení není předmětem státního či obchodního tajemství
WWW URL
Organizační jednotka Přírodovědecká fakulta
ISBN 978-80-8147-115-5
Změnil Změnila: Mgr. Marie Šípková, DiS., učo 437722. Změněno: 5. 10. 2022 13:06.
Anotace
This contribution presents the special type of Surface Dielectric Barrier Discharge (SDBD). An atmospheric pressure plasma technique was developed for technically simple treatment of inner and/or outer surfaces of hollow dielectric bodies, e.g., plastic tubes. The research results aimed at the application of the discharge will be presented. Using water solution as a discharge electrode makes it possible to combine basic features of both water discharges and surface dielectric barrier discharges [1]. The SDBD is generated from the contact line between the liquid electrode, air and dielectric material (tube). To illustrate the application potential of such SDBD and its basic physical properties, authors present a simple example of hydrophilization of the inner and outer surfaces of polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) tubes which play a crucial role in the plastics industry and continues to be a polymer of significant importance. The effect of plasma treatment on PTFE and PVC tubes was verified by the contact angle, XPS and SEM measurements. The next step in the technique development was the construction of several reactors enabling continuous plasma treatment on the laboratory and industrial scale and their successful testing. The technical details of the experimental setup and the results of polyethylene tube treatment are discussed in [2,3]. One of the experiments carried out by the authors was the deposition of liquid precursor (hexamethyldisiloxane) on the PTFE tube's external and internal wall surface with the help of this discharge type. Samples prepared in the dynamic mode were treated by the continual movement of the plasma ring across the tube surface. The motion of the plasma ring was achieved by a mechanism on the principle of two connected vessels. A better description of the apparatus can be found in [4]. Another possible application of such a plasma source was the plasma treatment of PTFE tubes to investigate the possibility of altering the properties of Pseudomonas aeruginosa cell biofilms formed on the inner surface of tubes. Experiments revealed the ability of plasma treatment to partially remove biofilms and inactivate the biofilm-forming cells. Thus, if it was not possible to remove all of the biofilm-forming cells, they were inactivated.
Návaznosti
LM2018097, projekt VaVNázev: Centrum výzkumu a vývoje plazmatu a nanotechnologických povrchových úprav (Akronym: CEPLANT)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, R&D centre for plasma and nanotechnology surface modifications
LO1411, projekt VaVNázev: Rozvoj centra pro nízkonákladové plazmové a nanotechnologické povrchové úpravy (Akronym: CEPLANT plus)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Rozvoj centra pro nízkonákladové plazmové a nanotechnologické povrchové úpravy
VytisknoutZobrazeno: 19. 4. 2024 19:57