2022
Improving IDP theoretical chemical shift accuracy and efficiency through a combined MD/ADMA/DFT and machine learning approach
BAKKER, Michael J., Arnošt MLÁDEK, Hugo SEMRÁD, Vojtěch ZAPLETAL, Jana PAVLÍKOVÁ PŘECECHTĚLOVÁ et. al.Základní údaje
Originální název
Improving IDP theoretical chemical shift accuracy and efficiency through a combined MD/ADMA/DFT and machine learning approach
Autoři
BAKKER, Michael J., Arnošt MLÁDEK, Hugo SEMRÁD (203 Česká republika, domácí), Vojtěch ZAPLETAL a Jana PAVLÍKOVÁ PŘECECHTĚLOVÁ (garant)
Vydání
Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2022, 1463-9076
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.300
Kód RIV
RIV/00216224:14310/22:00127220
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000885111900001
Klíčová slova česky
NMR spectroscopy; chemical shift; disordered protein; cluster analysis; optimization in normal modes; molecular dynamics; protein fragmentation; adjustable density matrix assembler; density functional theory; multi-scale modelling
Klíčová slova anglicky
NMR spectroscopy; chemical shift; disordered protein; cluster analysis; optimization in normal modes; molecular dynamics; protein fragmentation; adjustable density matrix assembler; density functional theory; multi-scale modelling
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 1. 12. 2022 15:07, Mgr. Hugo Semrád, Ph.D.
Anotace
V originále
This work extends the multi-scale computational scheme for the quantum mechanics (QM) calculations of Nuclear Magnetic Resonance (NMR) chemical shifts (CSs) in proteins that lack a well-defined 3D structure. The scheme couples the sampling of an intrinsically disordered protein (IDP) by classical molecular dynamics (MD) with protein fragmentation using the adjustable density matrix assembler (ADMA) and density functional theory (DFT) calculations. In contrast to our early investigation on IDPs (Pavlíková Přecechtělová et al., J. Chem. Theory Comput., 2019, 15, 5642–5658) and the state-of-the art NMR calculations for structured proteins, a partial re-optimization was implemented on the raw MD geometries in vibrational normal mode coordinates to enhance the accuracy of the MD/ADMA/DFT computational scheme. In addition, machine-learning based cluster analysis was performed on the scheme to explore its potential in producing protein structure ensembles (CLUSTER ensembles) that yield accurate CSs at a reduced computational cost. The performance of the cluster-based calculations is validated against results obtained with conventional structural ensembles consisting of MD snapshots extracted from the MD trajectory at regular time intervals (REGULAR ensembles). CS calculations performed with the refined MD/ADMA/DFT framework employed the 6-311++G(d,p) basis set that outperformed IGLO-III calculations with the same density functional approximation (B3LYP) and both explicit and implicit solvation. The partial geometry optimization did not universally improve the agreement of computed CSs with the experiment but substantially decreased errors associated with the ensemble averaging. A CLUSTER ensemble with 50 structures yielded ensemble averages close to those obtained with a REGULAR ensemble consisting of 500 MD frames. The cluster based calculations thus required only a fraction of the computational time.
Návaznosti
LM2018140, projekt VaV |
|