J 2022

Symmetry algebras of polynomial models in complex dimension three

KOLÁŘ, Martin

Basic information

Original name

Symmetry algebras of polynomial models in complex dimension three

Authors

KOLÁŘ, Martin (203 Czech Republic, guarantor, belonging to the institution)

Edition

Pure and Applied Mathematics Quarterly, International Press, Inc. 2022, 1558-8599

Other information

Language

English

Type of outcome

Article in a journal

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

is not subject to a state or trade secret

References:

Impact factor

Impact factor: 0.700

RIV identification code

RIV/00216224:14310/22:00129311

Organization unit

Faculty of Science

UT WoS

000800284800014

EID Scopus

2-s2.0-85133555315

Keywords in English

Infinitesimal CR automorphisms; Levi degenerate manifolds; Catlin multitype

Tags

Tags

International impact, Reviewed
Changed: 6/1/2023 14:48, Mgr. Marie Novosadová Šípková, DiS.

Abstract

In the original language

We consider the Lie algebra of infinitesimal CR automorphisms of a real hypersurface at a point of Levi degeneracy. As a main result, we give a complete classification of symmetry algebras of dimension at least six for polynomial models of finite Catlin multitype in C-3. As a consequence, this also provides understanding of "exotic" higher order symmetries, which violate 2-jet determination.

Links

GA21-09220S, research and development project
Name: Invarianty a symetrie Levi degenerovaných CR variet (Acronym: InSyLeD)
Investor: Czech Science Foundation