2022
Impact of the selected boundary layer schemes and enhanced horizontal resolution on the Weather Research and Forecasting model performance on James Ross Island, Antarctic Peninsula
MATĚJKA, Michael a Kamil LÁSKAZákladní údaje
Originální název
Impact of the selected boundary layer schemes and enhanced horizontal resolution on the Weather Research and Forecasting model performance on James Ross Island, Antarctic Peninsula
Autoři
MATĚJKA, Michael (203 Česká republika, garant, domácí) a Kamil LÁSKA (203 Česká republika, domácí)
Vydání
Czech Polar Reports, Masaryk University Press, 2022, 1805-0689
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10508 Physical geography
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.000
Kód RIV
RIV/00216224:14310/22:00127913
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000862170100002
Klíčová slova anglicky
polar meteorology; numerical simulation; WRF model; air temperature; snow cover; wind speed; Antarctic Peninsula
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 12. 1. 2023 12:04, Mgr. Marie Šípková, DiS.
Anotace
V originále
The output of the various Weather Research and Forecasting (WRF) model configurations was compared with ground-based observations in the northern part of James Ross Island, Antarctic Peninsula. In this region, a network of automatic weather stations deployed at ice-free sites (as well as small glaciers) is operated by the Czech Antarctic Research Programme. Data from these stations provide a unique opportunity to evaluate the WRF model in a complex terrain of James Ross Island. The model was forced by the ERA5 reanalysis data and the University of Bremen sea ice data. The model configurations include a novel Three-Dimensional Scale-Adaptive Turbulent Kinetic Energy (3D TKE) planetary boundary layer scheme and a more traditional Quasi-Normal Scale Elimination (QNSE) scheme. Impact of model horizontal resolution was evaluated by running simulations in both 700 m and 300 m. The validation period, 25 May 2019 to 12 June 2019, was selected to cover different stratification regimes of air temperature and a significant snowfall event. Air temperature was simulated well except for strong low-level inversions. These inversions occurred in 44% of all cases and contributed to a higher mean bias (2.0–2.9°C) at low-elevation sites than at high altitude sites (0.2–0.6°C). The selection of the 3D TKE scheme led to improvement at low-elevation sites; at high altitude sites, the differences between model configurations were rather small. The best performance in wind speed simulation was achieved with the combination of the 3D TKE scheme and 300 m model resolution. The most important improvement was decrease of bias at a coastal Mendel Station from 3.5 m·s‑1 with the QNSE scheme on the 700 m grid to 1.2 m·s‑1 with the 3D TKE scheme on the 300 m grid. The WRF model was also proven to simulate a large snowfall event with a good correspondence with the observed snow height.
Návaznosti
GA20-20240S, projekt VaV |
| ||
LM2015085, projekt VaV |
| ||
MUNI/A/1393/2021, interní kód MU |
| ||
VAN 2022, interní kód MU |
|