2022
Evaluating nnU-Net for early ischemic change segmentation on non-contrast computed tomography in patients with Acute Ischemic Stroke
EL-HARIRI, Houssam, Luis A Souto Maior NETO, Petra CIMFLOVÁ, Fouzi BALA, Rotem GOLAN et. al.Základní údaje
Originální název
Evaluating nnU-Net for early ischemic change segmentation on non-contrast computed tomography in patients with Acute Ischemic Stroke
Autoři
EL-HARIRI, Houssam (garant), Luis A Souto Maior NETO, Petra CIMFLOVÁ (203 Česká republika, domácí), Fouzi BALA, Rotem GOLAN, Alireza SOJOUDI, Chris DUSZYNSKI, Ibukun ELEBUTE, Seyed Hossein MOUSAVI, Wu QIU a Bijoy K MENON
Vydání
Computers in Biology and Medicine, OXFORD, PERGAMON-ELSEVIER SCIENCE LTD, 2022, 0010-4825
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30224 Radiology, nuclear medicine and medical imaging
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 7.700
Kód RIV
RIV/00216224:14110/22:00128306
Organizační jednotka
Lékařská fakulta
UT WoS
000788076100001
Klíčová slova anglicky
Machine learning; Deep learning; Computer vision; Segmentation; Neurovascular imaging; Computed tomography; Acute ischemic stroke; Brain lesion
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 1. 2023 08:49, Mgr. Tereza Miškechová
Anotace
V originále
Identifying the presence and extent of early ischemic changes (EIC) on Non-Contrast Computed Tomography (NCCT) is key to diagnosing and making time-sensitive treatment decisions in patients that present with Acute Ischemic Stroke (AIS). Segmenting EIC on NCCT is however a challenging task. In this study, we investigated a 3D CNN based on nnU-Net, a self-adapting CNN technique that has become the state-of-the-art in medical image segmentation, for segmenting EIC in NCCT of AIS patients. We trained and tested this model on a sizeable and heterogenous dataset of 534 patients, split into 438 for training and validation and 96 for testing. On this test set, we additionally assessed the inter-rater performance by comparing the proposed approach against two reference segmentation annotations by expert neuroradiologist readers, using this as the benchmark against which to compare our model. In terms of spatial agreement, we report median Dice Similarity Coefficients (DSCs) of 39.8% for the model vs. Reader-1, 39.4% for the model vs. Reader-2, and 55.6% for Reader-2 vs. Reader-1. In terms of lesion volume agreement, we report Intraclass Correlation Coefficients (ICCs) of 83.4% for model vs. Reader-1, 80.4% for model vs. Reader-2, and 94.8% for Reader-2 vs. Reader-1. Based on these results, we conclude that our model performs well relative to expert human performance and therefore may be useful as a decision-aid for clinicians.