2022
Validation of a machine learning software tool for automated large vessel occlusion detection in patients with suspected acute stroke
CIMFLOVÁ, Petra, Rotem GOLAN, Johanna M OSPEL, Alireza SOJOUDI, Chris DUSZYNSKI et. al.Základní údaje
Originální název
Validation of a machine learning software tool for automated large vessel occlusion detection in patients with suspected acute stroke
Autoři
CIMFLOVÁ, Petra (203 Česká republika, garant, domácí), Rotem GOLAN, Johanna M OSPEL, Alireza SOJOUDI, Chris DUSZYNSKI, Ibukun ELEBUTE, Houssam EL-HARIRI, Seyed Hossein MOUSAVI, Luis A Souto Maior NETO, Najratun PINKY, Benjamin BELAND, Fouzi BALA, Nima R KASHANI, William HU, Manish JOSHI, Wu QIU a Bijoy K MENON
Vydání
NEURORADIOLOGY, NEW YORK, SPRINGER, 2022, 0028-3940
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30224 Radiology, nuclear medicine and medical imaging
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.800
Kód RIV
RIV/00216224:14110/22:00128327
Organizační jednotka
Lékařská fakulta
UT WoS
000800996700001
Klíčová slova anglicky
Machine learning; Large vessel occlusion; Stroke; Automatic detection
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 1. 2023 13:05, Mgr. Tereza Miškechová
Anotace
V originále
Purpose CT angiography (CTA) is the imaging standard for large vessel occlusion (LVO) detection in patients with acute ischemic stroke. StrokeSENS LVO is an automated tool that utilizes a machine learning algorithm to identify anterior large vessel occlusions (LVO) on CTA. The aim of this study was to test the algorithm's performance in LVO detection in an independent dataset. Methods A total of 400 studies (217 LVO, 183 other/no occlusion) read by expert consensus were used for retrospective analysis. The LVO was defined as intracranial internal carotid artery (ICA) occlusion and M1 middle cerebral artery (MCA) occlusion. Software performance in detecting anterior LVO was evaluated using receiver operator characteristics (ROC) analysis, reporting area under the curve (AUC), sensitivity, and specificity. Subgroup analyses were performed to evaluate if performance in detecting LVO differed by subgroups, namely M1 MCA and ICA occlusion sites, and in data stratified by patient age, sex, and CTA acquisition characteristics (slice thickness, kilovoltage tube peak, and scanner manufacturer). Results AUC, sensitivity, and specificity overall were as follows: 0.939, 0.894, and 0.874, respectively, in the full cohort; 0.927, 0.857, and 0.874, respectively, in the ICA occlusion cohort; 0.945, 0.914, and 0.874, respectively, in the M1 MCA occlusion cohort. Performance did not differ significantly by patient age, sex, or CTA acquisition characteristics. Conclusion The StrokeSENS LVO machine learning algorithm detects anterior LVO with high accuracy from a range of scans in a large dataset.