2022
Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture
ERGIR, Ece, la Cruz Jorge OLIVER-DE, Soraia FERNANDES, Marco CASSANI, Francesco NIRO et. al.Základní údaje
Originální název
Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture
Autoři
ERGIR, Ece, la Cruz Jorge OLIVER-DE, Soraia FERNANDES, Marco CASSANI, Francesco NIRO (380 Itálie, domácí), Daniel PEREIRA DE SOUSA (620 Portugalsko, domácí), Jan VRBSKY (203 Česká republika), Vladimir VINARSKY (203 Česká republika), Ana Rubina PERESTRELO, Doriana DEBELLIS, Natália VADOVIČOVÁ (203 Česká republika, domácí), Stjepan ULDRIJAN (203 Česká republika, domácí), Francesca CAVALIERI, Stefania PAGLIARI, Heinz REDL, Peter ERTL a Giancarlo FORTE
Vydání
Nature Scientific Reports, Berlin, NATURE RESEARCH, 2022, 2045-2322
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10601 Cell biology
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.600
Kód RIV
RIV/00216224:14110/22:00128442
Organizační jednotka
Lékařská fakulta
UT WoS
000869897200017
Klíčová slova anglicky
3D organotypic cardiac microtissues; iPSC
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 24. 4. 2024 13:58, Mgr. Tereza Miškechová
Anotace
V originále
Cardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited. We have established a scaffold-free protocol to generate multicellular, beating human cardiac microtissues in vitro from hiPSCs-namely human organotypic cardiac microtissues (hOCMTs)-that show some degree of self-organization and can be cultured for long term. This is achieved by the differentiation of hiPSC in 2D monolayer culture towards cardiovascular lineage, followed by further aggregation on low-attachment culture dishes in 3D. The generated hOCMTs contain multiple cell types that physiologically compose the heart and beat without external stimuli for more than 100 days. We have shown that 3D hOCMTs display improved cardiac specification, survival and metabolic maturation as compared to standard monolayer cardiac differentiation. We also confirmed the functionality of hOCMTs by their response to cardioactive drugs in long-term culture. Furthermore, we demonstrated that they could be used to study chemotherapy-induced cardiotoxicity. Due to showing a tendency for self-organization, cellular heterogeneity, and functionality in our 3D microtissues over extended culture time, we could also confirm these constructs as human cardiac organoids (hCOs). This study could help to develop more physiologically-relevant cardiac tissue models, and represent a powerful platform for future translational research in cardiovascular biology.
Návaznosti
LM2018132, projekt VaV |
|