2023
Deep-Learning Based Trust Management with Self-Adaptation in the Internet of Behavior
BANGUI, Hind; Emilia CIOROAICA; Mouzhi GE a Barbora BÜHNOVÁZákladní údaje
Originální název
Deep-Learning Based Trust Management with Self-Adaptation in the Internet of Behavior
Autoři
BANGUI, Hind (504 Maroko, garant, domácí); Emilia CIOROAICA (642 Rumunsko); Mouzhi GE (156 Čína) a Barbora BÜHNOVÁ (203 Česká republika, domácí)
Vydání
Neuveden, The 38th ACM/SISAC '23: Proceedings of the 38th ACM/SIGAPP Symposium on Applied ComputingGAPP Symposium on Applied Computing (SAC '23), od s. 874-881, 8 s. 2023
Nakladatel
ACM
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/23:00130329
Organizační jednotka
Fakulta informatiky
ISBN
978-1-4503-9517-5
UT WoS
001124308100124
EID Scopus
2-s2.0-85162918126
Klíčová slova anglicky
Internet of Behavior;Trust Management;Deep Learning;Autonomous Systems
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 7. 4. 2024 22:49, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Internet of Behavior (IoB) has emerged as a new research paradigm within the context of digital ecosystems, with the support for understanding and positively influencing human behavior by merging behavioral sciences with information technology, and fostering mutual trust building between humans and technology. For example, when automated systems identify improper human driving behavior, IoB can support integrated behavioral adaptation to avoid driving risks that could lead to hazardous situations. In this paper, we propose an ecosystem-level self-adaptation mechanism that aims to provide runtime evidence for trust building in interaction among IoB elements. Our approach employs an indirect trust management scheme based on deep learning, which has the ability to mimic human behaviour and trust building patterns. In order to validate the model, we consider Pay-How-You-Drive vehicle insurance as a showcase of a IoB application aiming to advance the adaptation of business incentives based on improving driver behavior profiling. The experimental results show that the proposed model can identify different driving states with high accuracy, to support the IoB applications.
Návaznosti
CZ.02.1.01/0.0/0.0/16_019/0000822, interní kód MU (Kód CEP: EF16_019/0000822) |
| ||
EF16_019/0000822, projekt VaV |
|