J 2022

Atomic resolution studies of S1 nuclease complexes reveal details of RNA interaction with the enzyme despite multiple lattice-translocation defects

ADAMKOVA, Kristyna, Tomas KOVAL, Lars H OSTERGAARD, Jarmila DUSKOVA, Martin MALY et. al.

Základní údaje

Originální název

Atomic resolution studies of S1 nuclease complexes reveal details of RNA interaction with the enzyme despite multiple lattice-translocation defects

Autoři

ADAMKOVA, Kristyna, Tomas KOVAL, Lars H OSTERGAARD, Jarmila DUSKOVA, Martin MALY, Leona SVECOVA, Tereza SKALOVA, Petr KOLENKO a Jan DOHNALEK

Vydání

Acta Crystallographica Section D: Structural Biology, Chester, International Union of Crystallography, 2022, 2059-7983

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10608 Biochemistry and molecular biology

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.200

Kód RIV

RIV/00216224:14740/22:00128763

Organizační jednotka

Středoevropský technologický institut

UT WoS

000865745200002

Klíčová slova anglicky

S1 nuclease; Aspergillus oryzae; lattice-translocation defects; nucleotides; nucleosides; complexes

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 28. 2. 2023 15:11, Mgr. Pavla Foltynová, Ph.D.

Anotace

V originále

S1 nuclease from Aspergillus oryzae is a single-strand-specific nuclease from the S1/P1 family that is utilized in biochemistry and biotechnology. S1 nuclease is active on both RNA and DNA but with differing catalytic efficiencies. This study clarifies its catalytic properties using a thorough comparison of differences in the binding of RNA and DNA in the active site of S1 nuclease based on X-ray structures, including two newly solved complexes of S1 nuclease with the products of RNA cleavage at atomic resolution. Conclusions derived from this comparison are valid for the whole S1/P1 nuclease family. For proper model building and refinement, multiple lattice-translocation defects present in the measured diffraction data needed to be solved. Two different approaches were tested and compared. Correction of the measured intensities proved to be superior to the use of the dislocation model of asymmetric units with partial occupancy of individual chains. As the crystals suffered from multiple lattice translocations, equations for their correction were derived de novo. The presented approach to the correction of multiple lattice-translocation defects may help to solve similar problems in the field of protein X-ray crystallography.

Návaznosti

90127, velká výzkumná infrastruktura
Název: CIISB II