2017
A New 1/2-Ricci Type Formula on the Spinor Bundle and Applications
CHRYSIKOS, IoannisZákladní údaje
Originální název
A New 1/2-Ricci Type Formula on the Spinor Bundle and Applications
Autoři
Vydání
Advances in Applied Clifford Algebras, Springer, 2017, 0188-7009
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Itálie
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.174
UT WoS
000414140500010
Klíčová slova anglicky
Characteristic connection; Dirac operator with torsion; Generalized Schrodinger-Lichnerowicz formula; 1/2-Ricci formula; Parallel spinors; Twistor spinors with torsion
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 26. 5. 2023 11:56, Mgr. Marie Šípková, DiS.
Anotace
V originále
Consider a Riemannian spin manifold endowed with a non-trivial 3-form , such that , where is the metric connection with skew-torsion T. In this note we introduce a generalized -Ricci type formula for the spinorial action of the Ricci endomorphism , induced by the one-parameter family of metric connections . This new identity extends a result described by Th. Friedrich and E. C. Kim, about the action of the Riemannian Ricci endomorphism on spinor fields, and allows us to present a series of applications. For example, we describe a new alternative proof of the generalized Schrodinger-Lichnerowicz formula related to the square of the Dirac operator , induced by , under the condition . In the same case, we provide integrability conditions for -parallel spinors, -parallel spinors and twistor spinors with torsion. We illustrate our conclusions for some non-integrable structures satisfying our assumptions, e.g. Sasakian manifolds, nearly Kahler manifolds and nearly parallel -manifolds, in dimensions 5, 6 and 7, respectively.