2023
Mineral assemblages and compositional variations in bavenite–bohseite from granitic pegmatites of the Bohemian Massif, Czech Republic
NOVÁK, Milan; Zdeněk DOLNÍČEK; Adam ZACHAŘ; Petr GADAS; Miroslav NEPEJCHAL et. al.Základní údaje
Originální název
Mineral assemblages and compositional variations in bavenite–bohseite from granitic pegmatites of the Bohemian Massif, Czech Republic
Autoři
NOVÁK, Milan; Zdeněk DOLNÍČEK; Adam ZACHAŘ; Petr GADAS; Miroslav NEPEJCHAL; Kamil SOBEK; Radek ŠKODA a Luboš VRTIŠKA
Vydání
Mineralogical Magazine, Cambridge University Press, 2023, 0026-461X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10504 Mineralogy
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.800
Kód RIV
RIV/00216224:14310/23:00131000
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001007764000001
EID Scopus
2-s2.0-85150373127
Klíčová slova anglicky
bavenite; bohseite; mineral assemblages; composition; granitic pegmatite; Bohemian Massif
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 13. 7. 2023 09:44, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
The paragenesis and composition of bavenite–bohseite were investigated in fifteen granitic pegmatites from the Bohemian Massif, Czech Republic. Three types distinct in their relation to primary Be precursors, mineral assemblages, morphology and origin were recognised: (1) primary hydrothermal bavenite–bohseite crystallised in miarolitic pockets from residual pegmatite fluids; and secondary bavenite–bohseite in two distinct types: (2) a proximal type restricted spatially to pseudomorphs after a primary Be mineral (beryl > phenakite, helvine–danalite); and (3) a distal type on brittle fractures and fissures of host pegmatite. The mineral assemblages are highly variable: (1) axinite-(Mn), smectite, calcite and pyrite; (2) bertrandite, milarite, secondary beryl, bazzite, K-feldspar, muscovite–illite, scolecite, gismondine-Ca, analcime, chlorite; and (3) muscovite, albite, quartz, epidote, pumpellyite-(Mg), pumpellyite-(Fe3+), titanite and chlorite. Electron microprobe analyses showed, in addition to major constituents (Si, Ca and Al), minor concentrations (in apfu) of Na (≤0.24), Fe (≤0.10), Mn (≤0.10) and F (≤0.36). The type 1 hydrothermal miarolitic bavenite–bohseite is mostly Al-rich (2.00–0.67 apfu) relative to type 2 proximal bavenite–bohseite and bohseite after beryl, phenakite and helvine–danalite (1.56–0.46, 0.70–0.05, 1.02–0.35 apfu, respectively); and type 3 distal bavenite–bohseite typically after beryl (1.63–0.09 apfu). Raman spectroscopy revealed that the distance between the OH– vibrational modes decreases with increasing bohseite component. The Al content of secondary type 2 proximal bavenite–bohseite is controlled by the composition of the Be precursor whereas type 3 distal bavenite–bohseite with beryl as the Be precursor is more variable and the composition is governed mainly by the composition of fluids. Calcium, a crucial component for bavenite–bohseite origins, was derived from residual pegmatite fluids (Vlastějovice, Vepice IV or Třebíč Plutons) or external sources (e.g. Drahonín IV, Věžná I or Maršíkov). Primary type 1 hydrothermal bavenite–bohseite from miarolitic pockets might have crystallised at T ≈ 300–400°C and P ≈ 200 MPa, whereas the secondary type 2 and 3 bavenite–bohseite formed at T ≈ 300–100°C and P ≈ 200–20 MPa.
Návaznosti
| EF16_026/0008459, projekt VaV |
|