2023
Inserting Multiple Edges into a Planar Graph
CHIMANI, Markus a Petr HLINĚNÝZákladní údaje
Originální název
Inserting Multiple Edges into a Planar Graph
Autoři
CHIMANI, Markus (40 Rakousko) a Petr HLINĚNÝ (203 Česká republika, garant, domácí)
Vydání
Journal of Graph Algorithms and Applications, USA, Brown University, 2023, 1526-1719
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/00216224:14330/23:00131118
Organizační jednotka
Fakulta informatiky
Klíčová slova anglicky
crossing number; multiple edge insertion; fixed parameter tractability
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 7. 4. 2024 23:05, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Let G be a connected planar (but not yet embedded) graph and F a set of edges with ends in V(G) and not belonging to E(G). The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. A solution to this problem is known to approximate the crossing number of the graph G+F, but unfortunately, finding an exact solution to MEI is NP-hard for general F. The MEI problem is linear-time solvable for the special case of |F|=1 (SODA 01 and Algorithmica), and there is a polynomial-time solvable extension in which all edges of F are incident to a common vertex which is newly introduced into G (SODA 09). The complexity for general F but with constant k=|F| was open, but algorithms both with relative and absolute approximation guarantees have been presented (SODA 11, ICALP 11 and JoCO). We present a fixed-parameter algorithm for the MEI problem in the case that G is biconnected, which is extended to also cover the case of connected G with cut vertices of bounded degree. These are the first exact algorithms for the general MEI problem, and they run in time O(|V(G)|) for any constant k.
Návaznosti
GA20-04567S, projekt VaV |
|