2023
Development and evaluation of a fish feed mixture containing the probiotic Lactiplantibacillus plantarum prepared using an innovative pellet coating method
CHOMOVA, Natalia, Sylvie PAVLOKOVÁ, Miriam SONDOROVA, Dagmar MUDRONOVA, Adriana FECKANINOVA et. al.Základní údaje
Originální název
Development and evaluation of a fish feed mixture containing the probiotic Lactiplantibacillus plantarum prepared using an innovative pellet coating method
Autoři
CHOMOVA, Natalia, Sylvie PAVLOKOVÁ (203 Česká republika, domácí), Miriam SONDOROVA, Dagmar MUDRONOVA, Adriana FECKANINOVA, Peter POPELKA, Jana KOSCOVA, Rudolf ZITNAN a Aleš FRANC (203 Česká republika, garant, domácí)
Vydání
Frontiers in Veterinary Science, LAUSANNE, Frontiers Media SA, 2023, 2297-1769
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30104 Pharmacology and pharmacy
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.200 v roce 2022
Kód RIV
RIV/00216224:14160/23:00131262
Organizační jednotka
Farmaceutická fakulta
UT WoS
001016104700001
Klíčová slova anglicky
probiotic feed; physical characteristics; viability; nutritional composition; aquaculture
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 19. 7. 2023 09:51, JUDr. Sabina Krejčiříková
Anotace
V originále
IntroductionDue to the intensification of fish farming and the associated spread of antimicrobial resistance among animals and humans, it is necessary to discover new alternatives in the therapy and prophylaxis of diseases. Probiotics appear to be promising candidates because of their ability to stimulate immune responses and suppress the growth of pathogens. MethodsThe aim of this study was to prepare fish feed mixtures with various compositions and, based on their physical characteristics (sphericity, flow rate, density, hardness, friability, and loss on drying), choose the most suitable one for coating with the selected probiotic strain Lactobacillus plantarum R2 Biocenol & TRADE; CCM 8674 (new nom. Lactiplantibacillus plantarum). The probiotic strain was examined through sequence analysis for the presence of plantaricin- related genes. An invented coating technology based on a dry coating with colloidal silica followed by starch hydrogel containing L. plantarum was applied to pellets and tested for the viability of probiotics during an 11-month period at different temperatures (4 & DEG;C and 22 & DEG;C). The release kinetics of probiotics in artificial gastric juice and in water (pH = 2 and pH = 7) were also determined. Chemical and nutritional analyses were conducted for comparison of the quality of the control and coated pellets. Results and discussionThe results showed a gradual and sufficient release of probiotics for a 24-hour period, from 10(4) CFU at 10 mi up to 10(6) at the end of measurement in both environments. The number of living probiotic bacteria was stable during the whole storage period at 4 & DEG;C (10(8)), and no significant decrease in living probiotic bacteria was observed. Sanger sequencing revealed the presence of plantaricin A and plantaricin EF. Chemical analysis revealed an increase in multiple nutrients compared to the uncoated cores. These findings disclose that the invented coating method with a selected probiotic strain improved nutrient composition and did not worsen any of the physical characteristics of pellets. Applied probiotics are also gradually released into the environment and have a high survival rate when stored at 4 & DEG;C for a long period of time. The outputs of this study confirm the potential of prepared and tested probiotic fish mixtures for future use in in vivo experiments and in fish farms for the prevention of infectious diseases.