2024
Reproducibility in Management Science
FIŠAR, Miloš, Ben GREINER, Christoph HUBER, Elena KATOK, Ali OZKES et. al.Základní údaje
Originální název
Reproducibility in Management Science
Autoři
FIŠAR, Miloš (203 Česká republika, garant, domácí), Ben GREINER, Christoph HUBER (40 Rakousko), Elena KATOK (840 Spojené státy), Ali OZKES a Management Science REPRODUCIBILITY COLLABORATION
Vydání
MANAGEMENT SCIENCE, UNITED STATES, INFORMS, 2024, 0025-1909
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
50200 5.2 Economics and Business
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.400 v roce 2022
Organizační jednotka
Ekonomicko-správní fakulta
UT WoS
001132639700001
Klíčová slova anglicky
reproducibility; replication; crowd science
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 3. 2024 14:55, Mgr. Pavlína Kurková
Anotace
V originále
With the help of more than 700 reviewers we assess the reproducibility of nearly 500 articles published in the journal Management Science before and after the introduction of a new Data and Code Disclosure policy in 2019. When considering only articles for which data accessibility and hard- and software requirements were not an obstacle for reviewers, the results of more than 95 % of articles under the new disclosure policy could be fully or largely computationally reproduced. However, for 29 % of articles at least part of the dataset was not accessible to the reviewer. Considering all articles in our sample reduces the share of reproduced articles to 68 %. These figures represent a significant increase compared to the period before the introduction of the disclosure policy, where only 12\% of articles voluntarily provided replication materials, out of which 55 % could be (largely) reproduced. Substantial heterogeneity in reproducibility rates across different fields is mainly driven by differences in dataset accessibility. Other reasons for unsuccessful reproduction attempts include missing code, unresolvable code errors, weak or missing documentation, but also soft- and hardware requirements and code complexity. Our findings highlight the importance of journal code and data disclosure policies, and suggest potential avenues for enhancing their effectiveness.