2023
The position of vanadium in the crystal structure of zoisite, variety tanzanite: Structural refinement, optical absorption spectroscopy and bond-valence calculations
BAČÍK, Peter; Manfred WILDNER; Jan CEMPÍREK; Radek ŠKODA; Peter CIBULA et. al.Základní údaje
Originální název
The position of vanadium in the crystal structure of zoisite, variety tanzanite: Structural refinement, optical absorption spectroscopy and bond-valence calculations
Autoři
Vydání
Mineralogical Magazine, Mineralogical Society, 2023, 0026-461X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10504 Mineralogy
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.800
Kód RIV
RIV/00216224:14310/23:00132735
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001032815400001
EID Scopus
2-s2.0-85164327299
Klíčová slova anglicky
zoisite; vanadium; octahedron; optical absorption spectroscopy; crystal field Superposition Model; bond-valence calculation
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 1. 12. 2024 20:28, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
Vanadium is the dominant trace element and chromophore in tanzanite, the most valued gemmological variety of zoisite. The structure of zoisite–tanzanite was obtained by structural refinement to assess the vanadium location in the zoisite structure. However, the small V content in tanzanite evidenced by electron microprobe and laser ablation inductively coupled plasma mass spectrometry limits the exact determination of the V position in the zoisite structure. Structural refinement revealed that the average bond length of the less distorted M1,2O6 octahedron is below 1.90 Å, and M3O6 has slightly longer bonds with an average of ca. 1.96 Å. The M1,2 site is slightly overbonded with a bond-valence sum (BVS) of 3.03 vu, whereas M3 is slightly underbonded (BVS = 2.78 vu). Optical absorption spectra revealed that most V is trivalent, but a small portion is probably in a four-valent state. Therefore, crystal field Superposition Model and Bond-Valence Model calculations were applied based on several necessary assumptions: (1) V occupies octahedral sites; and (2) it can occur in two oxidation states, V3+ or V4+. Crystal field Superposition Model calculations from the optical spectra indicated that V3+ prefers occupying the M1,2 site; the preference of V4+ from the present data was impossible to determine. Bond-Valence Model calculations revealed no unambiguous preference for V3+, although simple bond-length calculation suggests the preference of the M3 site. However, it is quite straightforward that the M1,2 site is better suitable for V4+. If the possible octahedral distortion is considered, the M1,2O6 octahedron is subject to a smaller change in distortion if occupied by V3+ than the M3O6 octahedron. Consequently, considering the results of both the crystal field Superposition Model and Bond-Valence Model calculations, we assume that both V3+ and V4+ prefer the M1,2 site.