J 2023

Novel highly stable conductive polymer composite PEDOT:DBSA for bioelectronic applications

TUMOVÁ, Šárka, Romana MALEČKOVÁ, Lubomír KUBÁČ, Jiří AKRMAN, Vojtěch ENEV et. al.

Základní údaje

Originální název

Novel highly stable conductive polymer composite PEDOT:DBSA for bioelectronic applications

Autoři

TUMOVÁ, Šárka, Romana MALEČKOVÁ, Lubomír KUBÁČ, Jiří AKRMAN, Vojtěch ENEV, Lukáš KALINA, Eva VOJTKOVÁ (203 Česká republika, domácí), Michaela PEŠKOVÁ (203 Česká republika, domácí), Jan VÍTEČEK, Martin VALA a Martin WEITER

Vydání

Polymer Journal, Springer Nature, 2023, 0032-3896

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

20501 Materials engineering

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.800 v roce 2022

Kód RIV

RIV/00216224:14310/23:00132881

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000988896400001

Klíčová slova anglicky

ELECTROCHEMICAL TRANSISTORS; AQUEOUS DISPERSIONS; X-RAY; PEDOTPSS; STABILITY; ELECTRODE; FILMS; BIOCOMPATIBILITY; DIFFERENTIATION; STIMULATION

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 9. 1. 2024 12:47, Mgr. Marie Šípková, DiS.

Anotace

V originále

In this work, a novel conductive polymer composite consisting of poly(3,4-ethylenedioxythiophene) doped with dodecylbenzenesulfonic acid (PEDOT:DBSA) for bioelectronic applications was prepared and optimized. The novel PEDOT:DBSA composite possesses superior biocompatibility toward cell culture and electrical characteristics comparable to the widely used PEDOT:PSS. The cross-linking processes induced by the cross-linker glycidoxypropyltrimethoxysilane (GOPS), which was investigated in detail using Fourier transform Raman spectroscopy and XPS analysis, lead to the excellent long-term stability of PEDOT:DBSA thin films in aqueous solutions, even without treatment at high temperature. The electrical characteristics of PEDOT:DBSA thin films with respect to the level of cross-linking were studied in detail. The conductivity of thin films was significantly improved using sulfuric acid posttreatment. A model transistor device based on PEDOT:DBSA shows typical transistor behavior and suitable electrical properties comparable or superior to those of available conductive polymers in bioelectronics, such as PEDOT:PSS. Based on these properties, the newly developed material is well suited for bioelectronic applications that require long-term contact with living organisms, such as wearable or implantable bioelectronics.