2024
Machine learning estimated probability of relapse in early-stage non-small-cell lung cancer patients with aneuploidy imputation scores and knowledge graph embeddings
BUOSI, Samuele; Mohan TIMILSINA; Adriann JANIK; Luca COSTABELLO; Maria TORRENTE et. al.Základní údaje
Originální název
Machine learning estimated probability of relapse in early-stage non-small-cell lung cancer patients with aneuploidy imputation scores and knowledge graph embeddings
Autoři
BUOSI, Samuele; Mohan TIMILSINA; Adriann JANIK; Luca COSTABELLO; Maria TORRENTE; Mariano PROVENCIO; Dirk FEY a Vít NOVÁČEK
Vydání
Expert Systems with Applications, Elsevier, 2024, 0957-4174
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 7.500
Kód RIV
RIV/00216224:14330/24:00135372
Organizační jednotka
Fakulta informatiky
UT WoS
001063276900001
EID Scopus
2-s2.0-85168419455
Klíčová slova anglicky
Non-small-cell lung cancer; Tumor recurrence prediction; Knowledge graph embedding; Machine learning; Link prediction
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 4. 4. 2025 11:07, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Motivation: Low-stage lung cancer is known to recur unpredictably, and patients receiving various treatment methods like radiation, chemotherapy, and immunotherapies have been seen to respond very differently. Identifying a priori if a patient is going to relapse or not could make a difference in terms of saving lives and personalized care offered. In this work, we provide an answer to the following research question: Is it possible to enhance the machine learning (ML) of the estimated probability of relapse in early-stage non-small-cell lung cancer (NSCLC) patients with aneuploidy imputation scores? Results: To predict recurrence in 1,348 early-stage (I–II) NSCLC patients, we train graph ML models utilizing the Spanish pulmonary cancer group knowledge graph enriched with triples from pathway imputation. ML models trained on Knowledge graph data enriched with triples from pathway score imputation present an 82% Precision and 91% Specificity in predicting relapse over 200 patients from a held-out test set. ML models trained using graphs data could prove useful supplemental tool in the TNM classification systems and improve a lung cancer patient’s prognosis.
Návaznosti
| MUNI/G/1763/2020, interní kód MU |
|