2024
Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of Question Answering Models
MIKULA, Lukáš; Michal ŠTEFÁNIK; Marek PETROVIČ a Petr SOJKAZákladní údaje
Originální název
Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of Question Answering Models
Autoři
Vydání
St. Julian's, Malta, Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), od s. 2179-2193, 15 s. 2024
Nakladatel
Association for Computational Linguistics
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Kód RIV
RIV/00216224:14330/24:00135399
Organizační jednotka
Fakulta informatiky
ISBN
979-8-89176-088-2
UT WoS
001356732602016
EID Scopus
2-s2.0-85189943414
Klíčová slova anglicky
LLM; Large Language Models; bias; Question Answering;
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 30. 7. 2025 15:03, Mgr. Michal Petr
Anotace
V originále
While the Large Language Models (LLMs) dominate a majority of language understanding tasks, previous work shows that some of these results are supported by modelling spurious correlations of training datasets. Authors commonly assess model robustness by evaluating their models on out-of-distribution (OOD) datasets of the same task, but these datasets might share the bias of the training dataset. We propose a simple method for measuring a scale of models' reliance on any identified spurious feature and assess the robustness towards a large set of known and newly found prediction biases for various pre-trained models and debiasing methods in Question Answering (QA). We find that the reported OOD gains of debiasing methods can not be explained by mitigated reliance on biased features, suggesting that biases are shared among QA datasets. We further evidence this by measuring that performance of OOD models depends on bias features comparably to the ID model, motivating future work to refine the reports of LLMs' robustness to a level of known spurious features.
Návaznosti
| MUNI/A/1590/2023, interní kód MU |
| ||
| MUNI/A/1608/2023, interní kód MU |
|