2024
CzeGPT-2 – Training New Model for Czech Generative Text Processing Evaluated with the Summarization Task
HÁJEK, Adam a Aleš HORÁKZákladní údaje
Originální název
CzeGPT-2 – Training New Model for Czech Generative Text Processing Evaluated with the Summarization Task
Autoři
HÁJEK, Adam (203 Česká republika, domácí) a Aleš HORÁK (203 Česká republika, garant, domácí)
Vydání
IEEE ACCESS, UNITED STATES, IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2024, 2169-3536
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.900 v roce 2022
Organizační jednotka
Fakulta informatiky
UT WoS
001178339600001
Klíčová slova anglicky
Task analysis;Training;Measurement;Transformers;Decoding;Computational modeling;Vocabulary;Czech;GPT-2;large language model;model evaluation;model training;summarization
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 21. 3. 2024 17:56, doc. RNDr. Aleš Horák, Ph.D.
Anotace
V originále
Automatic text summarization (ATS), alongside neural machine translation or question answering, is one of the leading tasks in Natural Language Processing (NLP). In recent years, ATS has experienced significant development, especially in the English NLP world. Modern approaches are mainly based on the versatile Transformer architecture proposed by Vaswani et al. in 2017, which has revolutionized the field, and was later tuned and adjusted to various needs of different tasks. Non-mainstream languages, with Czech taken as a representative, on the other hand, are a little bit behind these efforts and tend to use lighter or heuristic methods. With the new CzeGPT-2 model and abstractive summarizer, we would like to take a step forward detailing the process of training a GPT-2 generative transformer model for a new language with a comprehensive evaluation of the task of Czech summarization and pointing out the benefits of this approach. We also present an in-depth analysis of the errors in generated summaries, allowing to locate the model’s weak spots.},
Návaznosti
LM2023062, projekt VaV |
|