2024
Head poses and grimaces: Challenges for automated face identification algorithms?
URBANOVÁ, Petra, Tomáš GOLDMANN, Dominik ČERNÝ a Martin DRAHANSKÝZákladní údaje
Originální název
Head poses and grimaces: Challenges for automated face identification algorithms?
Autoři
URBANOVÁ, Petra (203 Česká republika, garant, domácí), Tomáš GOLDMANN (203 Česká republika), Dominik ČERNÝ (203 Česká republika, domácí) a Martin DRAHANSKÝ (203 Česká republika, domácí)
Vydání
SCIENCE & JUSTICE, ENGLAND, ELSEVIER SCI LTD, 2024, 1355-0306
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.900 v roce 2022
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001262494100001
Klíčová slova anglicky
Forensic image identification; Automated algorithms; Head pose; Facial expressions
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 30. 7. 2024 13:38, Mgr. Marie Šípková, DiS.
Anotace
V originále
In today’s biometric and commercial settings, state-of-the-art image processing relies solely on artificial intelligence and machine learning which provides a high level of accuracy. However, these principles are deeply rooted in abstract, complex “black-box systems”. When applied to forensic image identification, concerns about transparency and accountability emerge. This study explores the impact of two challenging factors in automated facial identification: facial expressions and head poses. The sample comprised 3D faces with nine prototype expressions, collected from 41 participants (13 males, 28 females) of European descent aged 19.96 to 50.89 years. Pre-processing involved converting 3D models to 2D color images (256 × 256 px). Probes included a set of 9 images per individual with head poses varying by 5° in both left-to-right (yaw) and up-and-down (pitch) directions for neutral expressions. A second set of 3,610 images per individual covered viewpoints in 5° increments from −45° to 45° for head movements and different facial expressions, forming the targets. Pair-wise comparisons using ArcFace, a state-of-the-art face identification algorithm yielded 54,615,690 dissimilarity scores. Results indicate that minor head deviations in probes have minimal impact. However, the performance diminished as targets deviated from the frontal position. Right-to-left movements were less influential than up and down, with downward pitch showing less impact than upward movements. The lowest accuracy was for upward pitch at 45°. Dissimilarity scores were consistently higher for males than for females across all studied factors. The performance particularly diverged in upward movements, starting at 15°. Among tested facial expressions, happiness and contempt performed best, while disgust exhibited the lowest AUC values.
Návaznosti
MUNI/A/1597/2023, interní kód MU |
| ||
VB02000062, projekt VaV |
|