J 2024

Enhancing Accuracy in Breast Density Assessment Using Deep Learning: A Multicentric, Multi-Reader Study

BIROS, Marek, Daniel KVAK, Jakub DANDAR, Robert HRUBY, Eva JANU et. al.

Základní údaje

Originální název

Enhancing Accuracy in Breast Density Assessment Using Deep Learning: A Multicentric, Multi-Reader Study

Autoři

BIROS, Marek (203 Česká republika), Daniel KVAK (203 Česká republika, domácí), Jakub DANDAR (203 Česká republika), Robert HRUBY (203 Česká republika), Eva JANU (203 Česká republika), Anora ATAKHANOVA a Mugahed A AL-ANTARI

Vydání

Diagnostics, Basel, MPDI, 2024, 2075-4418

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30204 Oncology

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.600 v roce 2022

Organizační jednotka

Lékařská fakulta

UT WoS

001245417000001

Klíčová slova anglicky

BI-RADS; breast density; computer-aided diagnosis; deep learning; full-field digital mammography; medical image processing

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 2. 7. 2024 08:37, Mgr. Tereza Miškechová

Anotace

V originále

The evaluation of mammographic breast density, a critical indicator of breast cancer risk, is traditionally performed by radiologists via visual inspection of mammography images, utilizing the Breast Imaging-Reporting and Data System (BI-RADS) breast density categories. However, this method is subject to substantial interobserver variability, leading to inconsistencies and potential inaccuracies in density assessment and subsequent risk estimations. To address this, we present a deep learning-based automatic detection algorithm (DLAD) designed for the automated evaluation of breast density. Our multicentric, multi-reader study leverages a diverse dataset of 122 full-field digital mammography studies (488 images in CC and MLO projections) sourced from three institutions. We invited two experienced radiologists to conduct a retrospective analysis, establishing a ground truth for 72 mammography studies (BI-RADS class A: 18, BI-RADS class B: 43, BI-RADS class C: 7, BI-RADS class D: 4). The efficacy of the DLAD was then compared to the performance of five independent radiologists with varying levels of experience. The DLAD showed robust performance, achieving an accuracy of 0.819 (95% CI: 0.736-0.903), along with an F1 score of 0.798 (0.594-0.905), precision of 0.806 (0.596-0.896), recall of 0.830 (0.650-0.946), and a Cohen's Kappa (kappa) of 0.708 (0.562-0.841). The algorithm achieved robust performance that matches and in four cases exceeds that of individual radiologists. The statistical analysis did not reveal a significant difference in accuracy between DLAD and the radiologists, underscoring the model's competitive diagnostic alignment with professional radiologist assessments. These results demonstrate that the deep learning-based automatic detection algorithm can enhance the accuracy and consistency of breast density assessments, offering a reliable tool for improving breast cancer screening outcomes.