ZAHEDI, Leila, Pedram GHOURCHI BEIGI, Mária KOVÁČOVÁ, Monika STUPAVSKÁ, Mirko ČERNÁK a Dušan KOVÁČIK. Optimizing Electrospun Nanofibers for Enhanced Tissue Engineering Performance Assisted by Low-Temperature Atmospheric-Pressure Plasma Technology. In Electrospin2024 (8th International Conference on Electrospinning). 2024.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Optimizing Electrospun Nanofibers for Enhanced Tissue Engineering Performance Assisted by Low-Temperature Atmospheric-Pressure Plasma Technology
Autoři ZAHEDI, Leila, Pedram GHOURCHI BEIGI, Mária KOVÁČOVÁ, Monika STUPAVSKÁ, Mirko ČERNÁK a Dušan KOVÁČIK.
Vydání Electrospin2024 (8th International Conference on Electrospinning), 2024.
Další údaje
Originální jazyk angličtina
Typ výsledku Prezentace na konferencích
Obor 10305 Fluids and plasma physics
Stát vydavatele Polsko
Utajení není předmětem státního či obchodního tajemství
Organizační jednotka Přírodovědecká fakulta
Klíčová slova anglicky Atmospheric-Pressure Plasma, Drug Delivery System, Tissue Engineering, Polyhydroxybutyrate (PHB), Halloysite Nanotubes (HNT)
Změnil Změnila: Leila Zahedi, učo 518571. Změněno: 2. 7. 2024 09:31.
Anotace
Nowadays, the challenges in regenerative medicine have been solved by studying diverse tissue engineering techniques. An ideal scaffold should simulate the structure and function of targeted tissue to support cell viability, proliferation, migration, and new tissue formation. Among different approaches, the electrospinning (ES) method can produce a fibrous scaffold that can mimic the biological native extracellular matrix (ECM) with precise control over parameters such as voltage, distance, and flow rate. The electrospinning technique offers a wide range of physical properties — including controlling fiber diameter, porosity, and mechanical properties, which can induce cell/scaffold interaction, ensuring a suitable penetration/removal of nutrients/waste from the cell's activities [1]. Smaller fiber diameters facilitate quicker dissolution and enhance the release kinetics of pharmaceutical components [2]. The scaffold's appropriate mechanical properties also play a pivotal role, influencing not only its drug release performance [3] but also creating a microenvironment compatible with cells at the defect site [4], thereby ensuring overall efficacy. Polyhydroxybutyrate (PHB), a semi-crystalline biopolyester, is typically stored as an internal reserve substance in various bacteria and archaea, and its biodegradable, biocompatible, and ecologically safe thermoplastic features make it famous in nanomedicine and tissue engineering applications [5]. However, there have been endeavors to enhance PHB's physical and chemical attributes to address its limitations, including less-than-ideal mechanical properties due to its high crystallinity [6]. Nanoclays have recently found applications in tissue engineering. Halloysite nanotube (HNT) offers significant advantages in biomedical applications compared to other silicate tubular structures; specifically, it can enhance the mechanical strength of polymeric scaffolds [7]. In this research, a low-temperature atmospheric-pressure plasma generated by diffuse coplanar surface barrier discharge (DCSBD) [8] is utilized to enhance the properties of the HNT-loaded PHB electrospun scaffold. Analyzing the morphological, chemical, and mechanical properties of the created material revealed the surprising effect of plasma for the first time.
Návaznosti
LM2023039, projekt VaVNázev: Centrum výzkumu a vývoje plazmatu a nanotechnologických povrchových úprav
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, R&D centre for plasma and nanotechnology surface modifications
VytisknoutZobrazeno: 27. 7. 2024 14:27