2024
Characterization of Ordered Semigroups Generating Well Quasi-Orders of Words
KLÍMA, Ondřej a Jonatan KOLEGARZákladní údaje
Originální název
Characterization of Ordered Semigroups Generating Well Quasi-Orders of Words
Autoři
KLÍMA, Ondřej (203 Česká republika, domácí) a Jonatan KOLEGAR (203 Česká republika, domácí)
Vydání
Theory of Computing Systems, New York, Springer, 2024, 1432-4350
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 0.500 v roce 2022
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001200343100001
Klíčová slova anglicky
Finite semigroups; Well quasi-orders; Unavoidable words; Derivation relations; Ordered semigroups
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 29. 7. 2024 08:37, Mgr. Marie Šípková, DiS.
Anotace
V originále
The notion of a quasi-order generated by a homomorphism from the semigroup of all words onto a finite ordered semigroup was introduced by Bucher et al. (Theor. Comput. Sci. 40, 131-148 1985). It naturally occurred in their studies of derivation relations associated with a given set of context-free rules, and they asked a crucial question, whether the resulting relation is a well quasi-order. We answer this question in the case of the quasi-order generated by a semigroup homomorphism. We show that the answer does not depend on the homomorphism, but it is a property of its image. Moreover, we give an algebraic characterization of those finite semigroups for which we get well quasi-orders. This characterization completes the structural characterization given by Kunc (Theor. Comput. Sci. 348, 277-293 2005) in the case of semigroups ordered by equality. Compared with Kunc's characterization, the new one has no structural meaning, and we explain why that is so. In addition, we prove that the new condition is testable in polynomial time.
Návaznosti
GA19-12790S, projekt VaV |
|