J 2024

Profinite Congruences and Unary Algebras

ALMEIDA, Jorge a Ondřej KLÍMA

Základní údaje

Originální název

Profinite Congruences and Unary Algebras

Autoři

ALMEIDA, Jorge a Ondřej KLÍMA (203 Česká republika, domácí)

Vydání

Journal of Multiple-Valued Logic and Soft Computing, Old City Publishing Inc, 2024, 1542-3980

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 1.300 v roce 2022

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001269856600002

Klíčová slova anglicky

Profinite semigroup; profinite unary algebra; profinite congruence; Polish representation

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 7. 8. 2024 11:22, Mgr. Marie Šípková, DiS.

Anotace

V originále

Profinite congruences on profinite algebras determining profinite quotients are difficult to describe. In particular, no constructive description is known of the least profinite congruence containing a given binary relation on the algebra. On the other hand, closed congruences and fully invariant congruences can be described constructively. In a previous paper, we conjectured that fully invariant closed congruences on a relatively free profinite algebra are always profinite. Here, we show that our conjecture fails for unary algebras and that closed congruences on relatively free profinite semigroups are not necessarily profinite. As part of our study of unary algebras, we establish an adjunction between profinite unary algebras and profinite monoids. We also show that the Polish representation of the free profinite unary algebra is faithful.

Návaznosti

GA19-12790S, projekt VaV
Název: Efektivní charakterizace tříd konečných pologrup a formálních jazyků
Investor: Grantová agentura ČR, Efektivní charakterizace tříd konečných pologrup a formálních jazyků