J 2024

Tailored antisense oligonucleotides designed to correct aberrant splicing reveal actionable groups of mutations for rare genetic disorders

WAI, Htoo A, Eliška SVOBODOVÁ, Natalia Romero HERRERA, Andrew G L DOUGLAS, John W HOLLOWAY et. al.

Základní údaje

Originální název

Tailored antisense oligonucleotides designed to correct aberrant splicing reveal actionable groups of mutations for rare genetic disorders

Autoři

WAI, Htoo A, Eliška SVOBODOVÁ, Natalia Romero HERRERA, Andrew G L DOUGLAS, John W HOLLOWAY, Francisco E BARALLE, Marco BARALLE a Diana BARALLE

Vydání

EXPERIMENTAL AND MOLECULAR MEDICINE, LONDON, SPRINGERNATURE, 2024, 1226-3613

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 12.800 v roce 2022

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001281876400004

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 9. 9. 2024 08:40, Mgr. Tereza Miškechová

Anotace

V originále

Effective translation of rare disease diagnosis knowledge into therapeutic applications is achievable within a reasonable timeframe; where mutations are amenable to current antisense oligonucleotide technology. In our study, we identified five distinct types of abnormal splice-causing mutations in patients with rare genetic disorders and developed a tailored antisense oligonucleotide for each mutation type using phosphorodiamidate morpholino oligomers with or without octa-guanidine dendrimers and 2 '-O-methoxyethyl phosphorothioate. We observed variations in treatment effects and efficiencies, influenced by both the chosen chemistry and the specific nature of the aberrant splicing patterns targeted for correction. Our study demonstrated the successful correction of all five different types of aberrant splicing. Our findings reveal that effective correction of aberrant splicing can depend on altering the chemical composition of oligonucleotides and suggest a fast, efficient, and feasible approach for developing personalized therapeutic interventions for genetic disorders within short time frames.