2024
Efficient Code Region Characterization Through Automatic Performance Counters Reduction Using Machine Learning Techniques
HARUTYUNYAN, Suren; Eduardo CÉSAR; Anna SIKORA; Jiří FILIPOVIČ; Akash DUTTA et. al.Základní údaje
Originální název
Efficient Code Region Characterization Through Automatic Performance Counters Reduction Using Machine Learning Techniques
Autoři
HARUTYUNYAN, Suren; Eduardo CÉSAR; Anna SIKORA; Jiří FILIPOVIČ; Akash DUTTA; Ali JANNESARI a Jordi ALCARAZ
Vydání
Madrid, Spain, European Conference on Parallel Processing, od s. 18-32, 15 s. 2024
Nakladatel
Springer Nature Switzerland
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Španělsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14610/24:00137325
Organizační jednotka
Ústav výpočetní techniky
ISBN
978-3-031-69576-6
ISSN
UT WoS
001308370000002
EID Scopus
2-s2.0-85202614939
Klíčová slova anglicky
Performance counters; Automatic dimension reduction; machine learning ensambles; parallel region classification
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 4. 4. 2025 13:13, Mgr. Eva Špillingová
Anotace
V originále
Leveraging hardware performance counters provides valuable insights into system resource utilization, aiding performance analysis and tuning for parallel applications. The available counters vary with architecture and are collected at execution time. Their abundance and the limited number of registers for measurement make gathering laborious and costly. Efficient characterization of parallel regions necessitates a dimension reduction strategy. While recent efforts have focused on manually reducing the number of counters for specific architectures, this paper introduces a novel approach: an automatic dimension reduction technique for efficiently characterizing parallel code regions across diverse architectures. The methodology is based on Machine Learning ensembles because of their precision and ability at capturing different relationships between the input features and the target variables. Evaluation results show that ensembles can successfully reduce the number of hardware performance counters that characterize a code region. We validate our approach on CPUs using a comprehensive dataset of OpenMP regions, showing that any region can be accurately characterized by 8 relevant hardware performance counters. In addition, we also apply the proposed methodology on GPUs using a reduced set of kernels, demonstrating its effectiveness across various hardware configurations and workloads.
Návaznosti
| LM2023054, projekt VaV |
|