2024
Self-training Language Models for Arithmetic Reasoning
KADLČÍK, Marek a Michal ŠTEFÁNIKZákladní údaje
Originální název
Self-training Language Models for Arithmetic Reasoning
Autoři
KADLČÍK, Marek (203 Česká republika, domácí) a Michal ŠTEFÁNIK (703 Slovensko, garant, domácí)
Vydání
Hybrid, Miami, 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024, od s. 12378-12386, 9 s. 2024
Nakladatel
Association for Computational Linguistics
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/24:00137409
Organizační jednotka
Fakulta informatiky
ISBN
979-8-89176-168-1
EID Scopus
2-s2.0-85217622765
Klíčová slova anglicky
language models; arithmetic reasoning; self-training; implicit feedback; preference optimization
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 4. 4. 2025 01:13, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Recent language models achieve impressive results in tasks involving complex multistep reasoning, but scaling these capabilities further traditionally requires expensive collection of more annotated data. In this work, we explore the potential of improving models' reasoning capabilities without new data, merely using automated feedback to the validity of their predictions in arithmetic reasoning (self-training). In systematic experimentation across six different arithmetic reasoning datasets, we find that models can substantially improve in both single-round (offline) and online self-training, reaching a correct result in +13.9% and +25.9% more cases, respectively, underlining the importance of actuality of self-training feedback. We further find that in the single-round, offline self-training, traditional supervised training can deliver gains comparable to preference optimization, but in online self-training, preference optimization methods largely outperform supervised training thanks to their superior stability and robustness on unseen types of problems.
Návaznosti
MUNI/A/1590/2023, interní kód MU |
| ||
MUNI/A/1608/2023, interní kód MU |
|