2025
INSIGHT : Combining Fixation Visualizations and Residual Neural Networks for Dyslexia Classification from Eye-Tracking Data
ŠVAŘÍČEK, Roman; Nicol DOSTÁLOVÁ; Jan SEDMIDUBSKÝ a Andrej ČERNEKZákladní údaje
Originální název
INSIGHT : Combining Fixation Visualizations and Residual Neural Networks for Dyslexia Classification from Eye-Tracking Data
Autoři
ŠVAŘÍČEK, Roman (203 Česká republika, garant, domácí); Nicol DOSTÁLOVÁ (203 Česká republika, domácí); Jan SEDMIDUBSKÝ (203 Česká republika, domácí) a Andrej ČERNEK (703 Slovensko, domácí)
Vydání
DYSLEXIA, Chichester, WILEY, 2025, 1076-9242
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
50301 Education, general; including training, pedagogy, didactics [and education systems]
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.900 v roce 2023
Organizační jednotka
Filozofická fakulta
UT WoS
001401970700001
EID Scopus
2-s2.0-85215950318
Klíčová slova anglicky
dyslexia; eye tracking; eye movement; fixation data classification; deep learning; ResNet18; AI-based diagnosis
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 24. 6. 2025 12:28, Mgr. et Mgr. Stanislav Hasil
Anotace
V originále
Current diagnostic methods for dyslexia primarily rely on traditional paper-and-pencil tasks. Advanced technological approaches, including eye-tracking and artificial intelligence (AI), offer enhanced diagnostic capabilities. In this paper, we bridge the gap between scientific and diagnostic concepts by proposing a novel dyslexia detection method, called INSIGHT, which combines a visualization phase and a neural network-based classification phase. The first phase involves transforming eye-tracking fixation data into 2D visualizations called Fix-images, which clearly depict reading difficulties. The second phase utilizes the ResNet18 convolutional neural network for classifying these images. The INSIGHT method was tested on 35 child participants (13 dyslexic and 22 control readers) using three text-reading tasks, achieving a highest accuracy of 86.65%. Additionally, we cross-tested the method on an independent dataset of Danish readers, confirming the robustness and generalizability of our approach with a notable accuracy of 86.11%. This innovative approach not only provides detailed insight into eye movement patterns when reading but also offers a robust framework for the early and accurate diagnosis of dyslexia, supporting the potential for more personalized and effective interventions.
Návaznosti
TL05000177, projekt VaV |
|