J 2024

Mineral chemistry and thermobarometry of the pre-rift Upper Cretaceous to Paleocene melilite-bearing dykes from the northern part of the Bohemian Massif (Ploučnice River region): Implications for compositional variations of spinels from ultracalcic melts

BURIÁNEK, David; Kamil KROPÁČ a Yulia V Erban KOCHERGINA

Základní údaje

Originální název

Mineral chemistry and thermobarometry of the pre-rift Upper Cretaceous to Paleocene melilite-bearing dykes from the northern part of the Bohemian Massif (Ploučnice River region): Implications for compositional variations of spinels from ultracalcic melts

Název česky

Minerální chemie a termobarometrie předriftových svrchnokřídových až paleocénních melilitových žil ze severní části Českého masivu (oblast řeky Ploučnice): Důsledky pro chemickou variaci spinelů z ultravápenatých tavenin

Autoři

BURIÁNEK, David; Kamil KROPÁČ a Yulia V Erban KOCHERGINA

Vydání

Geochemistry, MUNICH, Elsevier GmbH, 2024, 0009-2819

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10505 Geology

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.900

Kód RIV

RIV/00216224:14310/24:00138492

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001253269700001

EID Scopus

2-s2.0-85185265594

Klíčová slova česky

Evropský kenozoický riftový systém; ultravápenatá tavenina; uložení magmatu; korové xenolity; frakční krystalizace; termobarometrie

Klíčová slova anglicky

European Cenozoic rift system; Ultracalcic melt; Magma storage; Crustal xenoliths; Fractional crystallization; Thermobarometry

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 31. 1. 2025 18:03, Mgr. Marie Novosadová Šípková, DiS.

Anotace

V originále

The Plounice River region (polzenite group) is uniquely characterized by its melilite-bearing subvolcanic rocks located in the northern section of the Bohemian Massif. They are the crystallization products of ultracalcic melts during the pre-rift evolution of the Ohre/Eger Rift, which is the easternmost part of the European Cenozoic Rift System. The melt was produced by low-degree partial melting of carbonate-bearing garnet peridotite and pyroxenite at a depth of approximately 100 km (P similar to 3.0 Gpa). The rapid ascent of the ultracalcic melts through the lithosphere was accompanied by fractional crystallization of olivine + spinel +/- clinopyroxene mainly within the upper to middle crustal storage zone at depths between 12 and 24 km (0.3-0.6 Gpa). Notably, olivine crystallized generally at higher temperatures (1257-1356 degrees C) compared to clinopyroxene (1156-1203 degrees C) and plagioclase (1099-1112 degrees C). The calculated oxygen fugacity during fractional crystallization (perovskite, -4.8 to +3.9 Delta NNO) decreases at the late-stage of crystallization due to residual magma exsolving oxidizing fluids and decreased fO(2) (oxygen fugacity) of the magmas from which monticellite was crystallized (Delta NNO -6.0 to -3.9). The rounded shapes and chemical composition (Cr/(Cr + Al) 0.52-0.82) of partially resorbed chromite xenocrystic cores in subhedral to euhedral spinel grains indicate that they originated in the mantle. The first stage of magmatic evolution for the studied rocks is related to the Cr-spinel (Cr/(Cr + Al) 0.35-0.50) crystallization, which successively changed to a high-alumina composition (Cr/(Cr + Al) 0.25-0.30). Magnetite (magnetite-ulvospinel solid solution) forms an atoll texture or small euhedral crystals in the groundmass. Both textural types of magnetite crystallized during the late-stage magmatic evolution of the ultracalcic melt. Carbonate or quartz-rich xenoliths were incorporated during magma emplacement under the upper crust. Sr-Nd isotopic data, mineral composition, and whole-rock chemical composition all verified that the assimilation of the xenoliths only affected the chemical composition of the host magma in the immediate neighborhood of the contract (up to a few millimeters around the xenolith).