J 2025

Colax adjunctions and lax-idempotent pseudomonads

ŠTĚPÁN, Miloslav

Basic information

Original name

Colax adjunctions and lax-idempotent pseudomonads

Authors

ŠTĚPÁN, Miloslav (203 Czech Republic, guarantor, belonging to the institution)

Edition

Theory and Applications of Categories, Mount Allison University, 2025, 1201-561X

Other information

Language

English

Type of outcome

Article in a journal

Field of Study

10101 Pure mathematics

Country of publisher

Canada

Confidentiality degree

is not subject to a state or trade secret

References:

Impact factor

Impact factor: 0.700 in 2024

Organization unit

Faculty of Science

UT WoS

001446275700007

EID Scopus

2-s2.0-85218740757

Keywords in English

2-category; lax adjunction; lax-idempotent pseudomonad; KZ-pseudomonad

Tags

Tags

International impact, Reviewed
Changed: 10/4/2025 13:28, Mgr. Marie Novosadová Šípková, DiS.

Abstract

In the original language

We prove a generalization of a theorem of Bunge and Gray about forming colax adjunctions out of relative Kan extensions and apply it to the study of the Kleisli 2-category for a lax-idempotent pseudomonad. For instance, we establish the weak completeness of the Kleisli 2-category and describe colax change-of-base adjunctions between Kleisli 2-categories. Our approach covers such examples as the bicategory of small profunctors and the 2-category of lax triangles in a 2-category. The duals of our results provide lax analogues of classical results in two-dimensional monad theory: for instance, establishing the weak cocompleteness of the 2-category of strict algebras and lax morphisms and the existence of colax change-of-base adjunctions.

Links

GA22-02964S, research and development project
Name: Obohacené kategorie a jejich aplikace (Acronym: ECATA)
Investor: Czech Science Foundation
MUNI/A/1457/2023, interní kód MU
Name: Specifický výzkum v odborné, aplikované a učitelské matematice 2024
Investor: Masaryk University