2024
Evaluation of Fractional Calculus and Delta Parameters in Prodromal Diagnosis of Dementia with Lewy Bodies utilizing Online Handwriting
MUCHA, Jan; Michal GAVENCIAK; Jiri MEKYSKA; Marcos FAUNDEZ-ZANUY; Luboš BRABENEC et. al.Základní údaje
Originální název
Evaluation of Fractional Calculus and Delta Parameters in Prodromal Diagnosis of Dementia with Lewy Bodies utilizing Online Handwriting
Autoři
MUCHA, Jan; Michal GAVENCIAK; Jiri MEKYSKA; Marcos FAUNDEZ-ZANUY; Luboš BRABENEC a Irena REKTOROVÁ
Vydání
NEW YORK, 2nd European Signal Processing Conference (EUSIPCO 2024) proceedings : 26-30 August 2024, Lyon, France, od s. 1731-1735, 5 s. 2024
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
30210 Clinical neurology
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Kód RIV
RIV/00216224:14110/24:00138930
Organizační jednotka
Lékařská fakulta
ISBN
978-94-645936-1-7
ISSN
UT WoS
001349787000347
EID Scopus
2-s2.0-85208432715
Klíčová slova anglicky
biomedical signal processing; feature extraction; fractional calculus; delta parameters; dementia with Lewy bodies; online handwriting; prodromal diagnosis
Změněno: 4. 4. 2025 13:32, Mgr. Tereza Miškechová
Anotace
V originále
This study evaluates the effect of fractional order derivatives (FD) and delta parameters in the prodromal diagnosis of dementia with Lewy bodies (DLB) utilizing online handwriting analysis. With DLB being the second most prevalent neurodegenerative dementia, early detection is critical for timely intervention. Leveraging advanced mathematical models, we explored the potential of FD-based and delta-based kinematic handwriting features compared to baseline. The analysis included 45 participants at high risk of developing DLB and 29 healthy controls who performed the Archimedean spiral task. Our findings reveal that FD-based kinematic features, mainly derived from the horizontal velocity at low alpha levels, are significantly discriminative. Moreover, the binary classification model trained with FD-based features achieved a balanced accuracy BACC=0.75. The study emphasizes the relevance of advanced kinematic parametrization in neurodegenerative disease diagnostics, presenting novel features as promising tools for DLB screening.
Návaznosti
| LX22NPO5107, projekt VaV |
| ||
| NU20-04-00294, projekt VaV |
|