2024
stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic
SAVERI, Gaia; Laura NENZI; Luca BORTOLUSSI a Jan KŘETÍNSKÝZákladní údaje
Originální název
stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic
Autoři
SAVERI, Gaia; Laura NENZI; Luca BORTOLUSSI a Jan KŘETÍNSKÝ
Vydání
Santiago de Compostela, Spain, ECAI 2024, 27th European Conference on Artificial Intelligence, od s. 1381-1388, 8 s. 2024
Nakladatel
IOS Press
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/24:00139091
Organizační jednotka
Fakulta informatiky
ISBN
978-1-64368-548-9
ISSN
EID Scopus
2-s2.0-85213343344
Klíčová slova anglicky
Vector Representation of Temporal Logic; Temporal Logic
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 31. 3. 2025 17:44, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Integrating symbolic knowledge and data-driven learning algorithms is a longstanding challenge in Artificial Intelligence. Despite the recognized importance of this task, a notable gap exists due to the discreteness of symbolic representations and the continuous nature of machine-learning computations. One of the desired bridges between these two worlds would be to define semantically grounded vector representation (feature embedding) of logic formulae, thus enabling to perform continuous learning and optimization in the semantic space of formulae. We tackle this goal for knowledge expressed in Signal Temporal Logic (STL) and devise a method to compute continuous embeddings of formulae with several desirable properties: the embedding (i) is finite-dimensional, (ii) faithfully reflects the semantics of the formulae, (iii) does not require any learning but instead is defined from basic principles, (iv) is interpretable. Another significant contribution lies in demonstrating the efficacy of the approach in two tasks: learning model checking, where we predict the probability of requirements being satisfied in stochastic processes; and integrating the embeddings into a neuro-symbolic framework, to constrain the output of a deep-learning generative model to comply to a given logical specification.
Návaznosti
| MUNI/I/1757/2021, interní kód MU |
|