2024
Quantum-mechanical study of the impact of thermal vibrations on the stability of the FeSn2 intermetallics
FRIÁK, Martin; Petr ČÍPEK; Pavla ROUPCOVÁ; Oldřich SCHNEEWEISS; Jana PAVLŮ et. al.Základní údaje
Originální název
Quantum-mechanical study of the impact of thermal vibrations on the stability of the FeSn2 intermetallics
Autoři
FRIÁK, Martin (203 Česká republika, garant); Petr ČÍPEK (203 Česká republika, domácí); Pavla ROUPCOVÁ; Oldřich SCHNEEWEISS (203 Česká republika); Jana PAVLŮ (203 Česká republika, domácí); Dominika FINK; šárka MSALLAMOVÁ a Alena MICHALCOVÁ
Vydání
NANOCON, 2024
Další údaje
Jazyk
angličtina
Typ výsledku
Konferenční abstrakt
Obor
10403 Physical chemistry
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14310/24:00139101
Organizační jednotka
Přírodovědecká fakulta
Klíčová slova anglicky
FeSn2; mechanical and thermodynamic stability; theoretical and experimental study
Změněno: 17. 3. 2025 19:37, doc. Mgr. Jana Pavlů, Ph.D.
Anotace
V originále
We have performed a combined theoretical and experimental study of FeSn2 intermetallics. We were motivated by a scarcity of published data as well as previous theoretical calculations of the antiferromagnetic (AFM) state of FeSn2, when this compound was found mechanically unstable due to imaginary-frequency phonons, i.e., effectively denying the existence of FeSn2. Addressing both mechanical and thermodynamic stability within density-functional theory (DFT) calculations, we focused on the AFM state as well as the ferromagnetic (FM) state of FeSn2, which were both considered in earlier experiments. In contrast to the previous calculations, we found the AFM FeSn2 state mechanically stable (no imaginary-frequency phonons). The same is true for the FM state, which possesses a slightly higher energy than the AFM state. The mechanical stability allowed for assessing the thermodynamic properties within both harmonic approximations as well as computationally much more demanding quasi-harmonic approximation. Interestingly, while the static-lattice formation energy of AFM FeSn2 is negative and, therefore, the compound is predicted stable with respect to the decomposition into elemental end-members, phonon-related contributions have a destabilizing impact at low temperatures. Our calculations were complemented by experimental characterization of Fe-Sn samples and the experimental FeSn2 lattice parameters were found in excellent agreement with theoretical values.
Návaznosti
LM2018140, projekt VaV |
| ||
90254, velká výzkumná infrastruktura |
|