2024
Note on Min- k-Planar Drawings of Graphs
HLINĚNÝ, Petr a Lili KÖDMÖNZákladní údaje
Originální název
Note on Min- k-Planar Drawings of Graphs
Autoři
HLINĚNÝ, Petr ORCID a Lili KÖDMÖN
Vydání
LIPIcs Vol. 320. Dagstuhl, Germany, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024), od s. "8:1"-"8:10", 10 s. 2024
Nakladatel
Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/24:00139105
Organizační jednotka
Fakulta informatiky
ISBN
978-3-95977-343-0
ISSN
EID Scopus
2-s2.0-85208783031
Klíčová slova anglicky
Crossing Number; Planarity; k-Planar Graph; Min-k-Planar Graph
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 18. 3. 2025 13:35, prof. RNDr. Petr Hliněný, Ph.D.
Anotace
V originále
The k-planar graphs, which are (usually with small values of k such as 1,2,3) subject to recent intense research, admit a drawing in which edges are allowed to cross, but each one edge is allowed to carry at most k crossings. In recently introduced [Binucci et al., GD 2023] min-k-planar drawings of graphs, edges may possibly carry more than k crossings, but in any two crossing edges, at least one of the two must have at most k crossings. In both concepts, one may consider general drawings or a popular restricted concept of drawings called simple. In a simple drawing, every two edges are allowed to cross at most once, and any two edges which share a vertex are forbidden to cross. While, regarding the former concept, it is for k ≤ 3 known (but perhaps not widely known) that every general k-planar graph admits a simple k-planar drawing and this ceases to be true for any k ≤ 4, the difference between general and simple drawings in the latter concept is more striking. We prove that there exist graphs with a min-2-planar drawing, or with a min-3-planar drawing avoiding crossings of adjacent edges, which have no simple min-k-planar drawings for arbitrarily large fixed k.