2024
Thawing permafrost can mitigate warming-induced drought stress in boreal forest trees
KIRDYANOV, Alexander V; Matthias SAURER; Alberto ARZAC; Anastasia A KNORRE; Anatoly S PROKUSHKIN et. al.Základní údaje
Originální název
Thawing permafrost can mitigate warming-induced drought stress in boreal forest trees
Autoři
KIRDYANOV, Alexander V; Matthias SAURER; Alberto ARZAC; Anastasia A KNORRE; Anatoly S PROKUSHKIN; Olga V. CHURAKOVA (SIDOROVA); Tito AROSIO; Tatiana BEBCHUK; Rolf SIEGWOLF a Ulf BÜNTGEN (276 Německo, domácí)
Vydání
Science of the Total Environment, Elsevier B.V. 2024, 0048-9697
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10500 1.5. Earth and related environmental sciences
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 8.000
Kód RIV
RIV/00216224:14310/24:00139122
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001133328000001
EID Scopus
2-s2.0-85178556974
Klíčová slova anglicky
Active soil layer; Boreal forest; Dendrochronology; Global warming; Siberia; Stable isotopes; Tree growth
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 18. 3. 2025 16:41, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
Perennially frozen soil, also known as permafrost, is important for the functioning and productivity of most of the boreal forest, the world's largest terrestrial biome. A better understanding of complex vegetation-permafrost interrelationships is needed to predict changes in local-to large-scale carbon, nutrient, and water cycle dy-namics under future global warming. Here, we analyze tree-ring width and tree-ring stable isotope (C and O) measurements of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) from six permafrost sites in the northern taiga of central Siberia. Our multi-parameter approach shows that changes in tree growth were predominantly controlled by the air and topsoil temperature and moisture content of the active soil and upper permafrost layers. The observed patterns range from strong growth limitations by early summer temperatures at higher elevations to significant growth controls by precipitation at warmer and well-drained lower-elevation sites. Enhanced radial tree growth is mainly found at sites with fast thawing upper mineral soil layers, and the comparison of tree-ring isotopes over five-year periods with different amounts of summer precipitation indicates that trees can prevent drought stress by accessing water from melted snow and seasonally frozen soil. Identifying the active soil and upper permafrost layers as central water resources for boreal tree growth during dry summers demonstrates the complexity of ecosystem responses to climatic changes.