2025
Pose Estimation Analysis and Fine-Tuning on the REHAB24-6 Rehabilitation Dataset
ČERNEK, Andrej; Jan SEDMIDUBSKÝ a Petra BUDÍKOVÁZákladní údaje
Originální název
Pose Estimation Analysis and Fine-Tuning on the REHAB24-6 Rehabilitation Dataset
Autoři
Vydání
Information Systems, 2025, 0306-4379
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Dánsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.400 v roce 2024
Organizační jednotka
Fakulta informatiky
UT WoS
001537388900001
Klíčová slova anglicky
REHAB24-6 dataset; pose estimation; motion capture; rehabilitation exercise; skeleton format; fine-tuning 2D/3D detectors; similarity of repetitions
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 29. 1. 2026 21:18, doc. RNDr. Jan Sedmidubský, Ph.D.
Anotace
V originále
Human motion analysis is a key enabler for remote healthcare applications, particularly in physical rehabilitation. In this context, mobile devices equipped with RGB cameras seem to be a promising technology for monitoring patients during home-based exercises and providing real-time feedback. This relies on pose estimation algorithms that extract spatio-temporal features of human motion from video data. While state-of-the-art models can estimate body pose from mobile video streams, their effectiveness in rehabilitation scenarios remains underexplored. To address this, we introduce the REHAB24-6 dataset, which includes untrimmed RGB videos, 2D and 3D skeletal ground truth annotations, and temporal segmentation for six common rehabilitation exercises. We also propose an evaluation protocol for assessing different aspects of quality of pose estimation methods, dealing with challenges that arise when different skeleton formats are compared. Additionally, we show how fine-tuning of existing models on our dataset leads to improved quality. Our experimental results compare several state-of-the-art approaches and highlight their key limitations -- particularly in depth estimation -- offering practical insights for selecting and improving pose estimation systems for rehabilitation monitoring.
Návaznosti
| FW09020055, projekt VaV |
| ||
| MUNI/A/1638/2024, interní kód MU |
|